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Abstract—An important approach to reducing missing her-
itability and enhancing success of genome-wide association
studies (GWAS) for complex diseases is the identification of
traits that are highly heritable and homogeneous in their
etiology. Many approaches have been proposed to define
such traits based on either cluster analysis or pedigree-based
heritable component analysis. None of the existing methods,
however, exploit the dense genome-wide genotypic data that
are now readily available from GWAS, and with exome and
whole genome sequencing more data will be available in the
future. Moreover, because a phenotype can vary with respect
to a covariate, such as age or race. The fixed effect due to the
covariates may lead to a spuriously elevated estimate of her-
itability. Existing heritable component analysis methods have
not considered covariate effects. We propose an optimization
approach to identify composite traits with high heritability as a
function of multiple phenotypic variables where heritability is
estimated from genome-wide single neucleotide polymorphisms
(SNPs). Our approach can model the covariate effects within
heritability analysis. The proposed optimization problem can
be efficiently solved by a sequential quadratic programming
algorithm. A case study demonstrates the effectiveness of the
proposed approach for finding composite traits with high SNP-
based heritability.

Keywords-phenotype-genotype analysis, chip heritability,
quadratic optimization

I. INTRODUCTION

Genome-wide association studies (GWAS) have had lim-
ited success in elucidating genetic etiology of complex
diseases, such as substance use disorders [1], [2], [3]. The
heterogeneity in disease phenotypes, e.g., in the variables
that are used to diagnose and characterize the disease, is
considered to be one of the major obstacles to greater suc-
cess in gene finding through GWAS [3]. Defining composite
traits that characterize more homogeneous subtypes of a
disease could help to remove this obstacle. Unsupervised
cluster analysis has commonly been used to partition a study
population into subgroups based on clinical variables [4],
[5], [6], [7]. This approach can create subgroups that are
homogeneous phenotypically. However, it has limited utility
in association analysis, because genetic data is not used in
the creation of the subgroups.

For a complex disease, clinical variables vary among
subjects, resulting in large phenotypic variance in the disease
population. These variables also show varying degrees of
heritability, e.g., some are more genetically influenced than
others. Identifying highly heritable components of disease
phenotypes is important because it increases the likelihood
of identifying genetic associations with these components.
Pedigree-based methods have been developed to identify
principal components of phenotypic data that are highly
heritable [8], [9], [10], [11]. These methods can only be
used in a family-based study. As is widely recognized,
it is challenging to recruit multi-member families on a
large scale. With the availability of dense genotypic data,
heritability can now be estimated from unrelated individuals
with genome-wide genetic markers, using what is called chip
heritability [12].

In this paper, we propose an optimization approach to
identify a trait of high chip heritability by solving the inverse
problem of (chip) heritability estimation. To estimate the
chip heritability of a given trait, recently published methods
use the restricted maximum likelihood (REML) method if
the trait follows a mixed effect model with random genetic
effects and fixed effects due to covariates [13], [12]. We
propose to identify a linearly combined trait with high
chip heritability when estimated using the REML method.
Directly solving the inverse problem leads to a quadratic
optimization problem that can be optimized efficiently via
a sequential quadratic programming algorithm. We validate
the proposed approach on a real world dataset from a multi-
site cocaine dependence study. Our experimental results
show the effectiveness of the proposed approach.

II. METHOD

Given a set of n subjects, we use a vector y of length
n to denote trait values for a quantitative trait y, a matrix
Zn×m to represent standardized genotypic data at m genetic
markers, and Cn×p to represent data on p covariates. The
matrix Z is calculated from the genotypic data as follows:
let fj be the frequency of the j-th genetic variant, rij be the
number of copies of a reference allele at the j-th genetic
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variant of the i-th subject, and the standardized genotype
zij is calculated as (rij − fj)/

√
2fj(1− fj). Following

the model in the chip heritability estimation method, we
consider the following mixed linear model that characterizes
how a phenotype is related to genotypes and covariates:

y = Cβ + Zu+ ε, (1)

where ε is a vector of length n, specifying residual effects.
In Eq.(1), all covariates create fixed effects (fixed β) on
the phenotype whereas genetic effects are random (random
u). Assume u and ε follow Gaussian distributions: u ∼
N(0, Iσ2

u) and ε ∼ N(0, Iσ2
e). Then, the variance of y,

denoted by V, can be calculated as:

V = ZZTσ2
u + Iσ2

e . (2)

Let σ2
g be the phenotypic variance attributable to all of the m

genetic causal variants. Then, σ2
g = mσ2

u. Let G = ZZT /m,
which is the genetic relationship matrix (GRM) among
subjects determined by the causal variants. Then Eq. (2) can
be re-written as:

V = Gσ2
g + Iσ2

e . (3)

where σ2
g and σ2

e can be estimated by the REML method
[14], [15]; and the chip heritability estimated on the m
genetic variants is computed as h2 = σ2

g/σ
2
p, where

σ2
p = σ2

g + σ2
e is the overall phenotypic variance. Because

the causal variants are usually unknown for a trait, recent
methods propose to use genome-wide SNPs to estimate a
GRM [13], [12].

In REML, the log likelihood (after removing constants)
used to estimate σ2

g and σ2
e can be written as:

`(σ2
g , σ

2
e ;y,C,Z) = −

1

2
(ln |V|+ ln |CTV−1C|+ yTPy),

(4)
where P = V−1 − V−1C(CTV−1C)−1CTV−1. Given
data: y, C and Z, σ2

g and σ2
e are optimized to maximize

`(σ2
g , σ

2
e ;y,C,Z) [15]. The chip heritability of a trait y

contributed by genetic causal variants is computed using the
optimal σ̂g2 and σ̂e2.

However, in the inverse problem, a definitive quantitative
trait y is not known beforehand but needs to be derived from
a set of phenotypic variables. Let Xn×d be the data matrix
of d phenotypic variables for the same n subjects as in Z and
a trait y is defined by a linear function y = Xw. Unlike the
heritability estimation process that finds the best values of σ2

g

and σ2
e to maximize the likelihood of observing the values

of y, the inverse problem searches for the best w so as to
form a trait y that maximizes the likelihood, (or equivalently
the log likelihood `(σ2

g , σ
2
e ;y,C,Z)) of observing a large

heritability, i.e., a large σ2
g but small σ2

e . For simplicity
and ease of interpretation of the resultant model, here we
only consider linear models, but the proposed method can
be easily extended to construct non-linear models through

kernel mapping [16].
Note that the highest possible heritability of a trait y is

1 when σ2
g = 1 and σ2

e = 0. We propose to formulate an
optimization problem in which we search for an optimal
w that maximizes `(σ2

g , σ
2
e ;y,C,Z) where y = Xw, and

σ2
g = 1 and σ2

e = 0. Substituting the values of these
parameters in the log likelihood and removing constants
yield the following objective function:

min
w

wT (XTPX)w (5)

where P is calculated as:

P = G−1 −G−1C(CTG−1C)−1CTG−1. (6)

Since σ2
g = 1 and σ2

e = 0, the phenotypic covariance matrix
V = G (based on Eq.(3)).

Because σ2
p = σ2

g+σ
2
e , when σ2

g = 1 and σ2
e = 0, we have

σ2
p = 1. This so imposes a constraint in the optimization

problem that the total phenotypic variance is scaled to 1.
As the true distribution of the trait is not known, σ2

p cannot
be estimated. It is commonly approximated by the sample
variance of the trait (denoted by s2).

s2 = wT

(
1

n
XTX− 1

n2
XT11TX

)
w

= wT

(
XT

(
1

n
I− 1

n2
11T

)
X

)
w.

where I is an identity matrix of n× n and 1 is an n-entry
vector of all ones. Let

Q = (1/n)I− (1/n2)11T . (7)

Then, s2 can be simplified to wT (XTQX)w. Combining
the objective function and the constraint together, the pro-
posed optimization problem is formulated as:

min
w

wT (XTPX)w

subject to wT (XTQX)w = 1
(8)

We now regularize the linear model by including a reg-
ularizer on w that aims to avoid the overfitting problem.
If overfitting occurs, the optimal w of Problem (8) may
correspond to a trait that has high heritability using the
data that are used to train the linear model, but when the
model is applied to a new sample, the resultant trait has
low heritability. To prevent overfitting and identify a trait
with high heritability that can generalize, we incorporate
a regularizer R(w) in the formulation. The optimization
problem becomes:

min
w

wT (XTPX)w + λR(w)

subject to wT (XTQX)w = 1,
(9)

where λ is a hyper-parameter that has to be pre-determined.
It can either be chosen by users according to domain
knowledge or determined using cross-validation, as in the
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experiments conducted in this paper. According to sta-
tistical learning theory [16], minimizing wT (XTPX)w
corresponds to empirical risk minimization, whereas min-
imizing the objective in Eq.(9) corresponds to structural
risk minimization that improves the generalizability of the
resultant model. There are many different ways to realize
R(w). A common choice is ‖w‖22 =

∑
i w

2
i . Another

regularizer defined by ‖w‖1 =
∑

i |wi| is a better choice
when model sparsity is required to select fewer variables
for use in the model. In more complicated applications,
where variables may be grouped and selection among groups
is expected, a structured regularizer, such as the group
lasso ||w||2,1 =

∑L
`=1

√∑
i∈G` w

2
i , can be used where G`

contains the indices of variables belonging to a group `.
Unlike our earlier work [11] that used related individuals

to derive highly-heritable traits based on pedigrees, this
study employs genome-wide SNPs to compute a GRM to
replace the kinship matrix derived from pedigrees. However,
similar to [11], an efficient sequential-quadratic-optimization
(SQP) algorithm can be developed to solve Problem (9),
while the regularization term is realized by ‖w‖1.

III. COMPUTATIONAL RESULTS

We validated the proposed approach in the analysis of
a real-world data set aggregated from a multi-site genetic
study of cocaine dependence (CD) involving the University
of Connecticut Health Center, Yale University School of
Medicine, the University of Pennsylvania Perelman School
of Medicine, McLean Hospital and the Medical University
of South Carolina. All subjects underwent phenotypic as-
sessment and provided a blood or saliva sample for geno-
typing according to procedures approved by the institutional
review board at each participating site. There were 6,621
subjects genotyped at a total of 1,140,420 SNPs genome-
wide. Among them, 2,674 were African American, and only
these subjects were involved in our experiments to avoid
spurious findings due to population structure. We removed
537 subjects with other family members in the data so that
GRM could be computed for unrelated individuals.

A series of data cleaning steps were performed to ensure
the quality of genotypic markers. Markers that met any of the
following conditions were excluded: low call rate (< 98%),
G/C and A/T markers (to avoid strand issues), deviation
from Hardy-Weinberg equilibrium (p < 1e−8), a significant
cohort calling discrepancy and being monomorphic. We also
removed non-autosomal markers, so that only markers from
the 22 autosomal chromosomes were used in the analy-
sis. After data cleaning, 690,864 SNPs remained. Genetic
relationship was estimated for each pair of subjects using
the Genome-wide Complex Trait Analysis (GCTA) software
[15] and all 690,864 SNPs. We subsequently excluded 385
subjects whose relatedness with other subjects was greater
than 0.025 (corresponding to the relatedness of second
cousins). Ultimate, 1,752 subjects were used in our analysis.

All subjects were interviewed with a computer-assisted
survey instrument, the Semi-Structured Assessment for Drug
Dependence and Alcoholism (SSADDA) [17], which con-
sists of questions designed to elicit key features of cocaine
use and related behaviors. The questions include those that
evaluate the presence of seven criteria for the DSM-IV
diagnosis of CD. These seven criteria are as follows:

• F1 - tolerance to the effects of cocaine;
• F2 - withdrawal from cocaine with abstinence;
• F3 - using cocaine in larger amounts or over a longer

period than intended;
• F4 - persistent desire or unsuccessful efforts to cut

down or control cocaine use;
• F5 - great amount of time spent in activities necessary

to obtain, use or recover from the effects of cocaine;
• F6 - having given up or reduced important social, oc-

cupational, or recreational activities because of cocaine
use;

• F7 - cocaine use despite knowledge of persistent or
recurrent physical or psychological problems likely to
have been caused or exacerbated by cocaine.

In our experiments, the seven variables are coded as 0
(absent) or 1 (present). In a previous study [1], the number
of CD criteria (0-7) was shown to be a better trait for use in
genetic association studies than the binary trait represented
by the presence and absence diagnosis of CD. The cocaine
criterion count is defined as the number of positive responses
to the seven variables, a composite trait resulting from the
linear combination of the seven variables with equal weights.
Our objective was to identify a linear combination of the
same seven variables that yielded a trait with a higher
heritability (h2) estimate than that of the cocaine criterion
count. Because all seven variables are binary, their h2s were
not estimated here.

We ran 10 times three-fold cross validation (CV) to
determine a proper value of λ. Once λ was determined, we
ran the proposed method on the entire sample to identify the
final trait. All the reported values of h2 were estimated using
GCTA with a GRM computed using the 690,864 SNPs. In
all of these expriments, we used age, sex and the first three
PCs of the GRM as covariates.

The test values of h2s for all traits derived in the CV are
plotted in Figure 1. When λ = 4, the derived traits had the
highest heritability estimates, with a mean of 0.29. We then
set λ = 4 and applied our method, developing a trait from
the entire sample, which had an estimated chip h2 = 0.3 (s.e.
0.27). We also estimated the chip h2 of the cocaine criterion
count using the same sample set, GRM and covariates. It
had an h2 estimate near zero. These results demonstrate
the effectiveness of our approach in identifying a heritable
composite trait from a complex multivariate phenotype.
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Figure 1. Case study on cocaine dependence dataset: testing values of h2
of the composite traits derived in three-fold cross validation with varying
λ.

IV. CONCLUSION

We developed an approach to identify composite traits
from multivariate phenotypes that are highly heritable when
estimated using genome-wide SNPs. The trait we derived
is in the form of a linear combination of variables related
to the phenotype. A quadratic optimization problem was
formulated, which searches for the combination weights to
optimize the log likelihood for estimating variance compo-
nents in REML. In this formulation, variance components
are set to their ideal values with the additive genetic variance
component σ2

g equal to 1 and other components equal to
0. Our empirical results on a case study demonstrate the
effectiveness of our approach as it identifies traits with much
higher chip h2 than commonly-used disease phenotypes.

In this paper, the pairwise genetic relationships among
subjects were estimated from genome-wide SNPs. However,
it could also be estimated using SNPs restricted to a specific
region, such as a particular chromosome or genes related to a
pathway, to explore the genetic architecture of a trait. When
SNPs within a specific region are used, the trait resulting
from the proposed approach will achieve the maximized
genetic variance component corresponding to this region. In
an application, such as substance dependence, where there
are known pathways underlying the biology of the disorder,
it may be of interest to determine whether a composite
trait exists, the variance of which can be largely explained
by variants within these pathways, which will be a future
application of our approach.
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