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Abstract—Soybean is one of the most important crops for
food, feed and bio-energy world-wide. The study of soybean
phenotypic variation at different geographical locations can
help the understanding of soybean domestication, population
structure of soybean, and the conservation of soybean biodiver-
sity. We investigate if soybean varieties can be identified that
they differ from other varieties on multiple traits even when
growing at different geographical locations. When a collection
of traits are observed for the same soybean type at different
locations (different views), joint analysis of the multiple-
view data is required in order to identify the same soybean
clusters based on data from different locations. We employ
a new multi-view singular value decomposition approach that
simultaneously decomposes the data matrix gathered at each
location into sparse singular vectors. This approach is able
to group soybean samples consistently across the different
locations and simultaneously identify the phenotypes at each
location on which the soybean samples within a cluster are
the most similar. Comparison with several latest multi-view
co-clustering methods demonstrates the superior performance
of the proposed approach.

Keywords-multi-view data analysis, multi-view clustering,
soybean population structure, soybean trait analysis

I. INTRODUCTION

Soybean is cultivated globally, in part because it produces
among the highest gross oil output - with the highest protein
content - of any vegetable crop [1]. There is cytological,
biochemical and molecular evidence that supports the do-
mestication of soybean from Glycine soja, a wild annual
species that is native throughout China, and parts of Korea,
Japan and Russia. Wild soybean is the closest wild relative
of the cultivated soybean (Glycine max). A long history
of domestication, cultivation and breeding has narrowed
the genetic basis of cultivated soybean, limiting further
improvement of crop yield and quality. In contrast, wild
soybeans, which inhabit a wide range of eco-geographic
regions in East Asia, have diverse genetic variability in pest
and disease resistance genes and other useful agricultural
and ecological characteristics [2]. However, global climate
change and the destruction of the ecological balance have
sped up the extinction rate of the wild species [3]. Compre-
hensive and extensive investigation of the population genetic
structure and the phenotypic variability of wild and culti-
vated soybean is important. Besides several early works that

studied the population genetic structure of both cultivated
and wild soybean [4], [5], in this work, we focus on the
understanding of the phenotypic variability and similarity
of soybean populations via an advanced clustering method
- multi-view bi-clustering where we identify subgroups of
soybean varieties according to their phenotypes observed at
different eco-geographical locations.

In the existing statistic and machine learning literature,
multi-view data analysis methods include supervised/semi-
supervised co-training [6], [7], [8], unsupervised co-
clustering [9], [10], [11], [12], [13], [14] or multi-view
feature learning [15], [16] where samples are characterized
or viewed in multiple ways, thus creating multiple sets of
input variables. When the majority of the data is unlabeled,
co-training improves the classification accuracy by enforcing
consistency between the classification decisions of the unla-
beled data determined by the models learned independently
from each of the views. For co-clustering, there are two types
of methods: (1) biclustering [14], [17], [18], also called two-
mode clustering [11], simultaneously clusters the rows and
columns of a data matrix; (2) multi-view co-clustering [19],
[12], [13], [15] seeks clusterings that are consistent across
different views. The first type of co-clustering is similar to
another set of algorithms [20], [9] that search subspaces,
each of which corresponds to a view of the data and gives
different clusters in different subspaces. Biclustering and
subspace searching essentially find subspaces to define clus-
ters only in one view of data or one source of data. Another
set of multi-view subspace learning algorithms search for a
low dimensional representation of data that enables accurate
reconstruction [16].

Our problem, most similar to multi-view co-clustering,
seeks a grouping of subjects that is in accordance with each
other between different views. However, existing multi-view
clustering methods all assume that an underlying partition
exists and all given variables in each view are used to reveal
this underlying partition. In our problem, clusters may exist
in different subspaces, and an underlying partition consistent
across all views may be revealed by the identification of
the features or subspaces that specify the clusters. If a data
matrix has rows represent subjects and columns represent
features. This problem can be viewed as performing bi-
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clustering in each view to identify both row clusters and
column clusters simultaneously but the row clusters from the
different views should be the same. Figure 1 demonstrates
the problem in two views with two data matrices. In an ideal
clustering solution, each group of subjects (rows) shows high
similarity over a subset of variables in view 1 as well as a
subset of variables in view 2.

Figure 1. Sparse co-clustering: rows are grouped in the same way across
the two matrices. The subjects in each row cluster are homogeneous over
a subset of variables from each of the views.

II. MULTI-VIEW DATA MATRIX DECOMPOSITION

Given a single data matrix X of size n-by-d, a subgroup of
its rows and a subgroup of its columns can be simultaneously
achieved by the sparse singular value decomposition (SSVD)
of X [21]. The SSVD requires both the left and right
singular vectors to be sparse. Let u of size n and v of size
d be two singular vectors resulted from the SSVD. Their
outer product forms a sparse low-rank approximation of the
original matrix, X ≈ σuvT where σ is the corresponding
singular value. Then, rows in X corresponding to non-
zero components in u form a row subgroup and columns
in X corresponding to non-zero components in v form a
column subgroup. The resulted row and column clusters help
to define each other. The SSVD finds all singular vectors
sequentially by repeatedly solving the following problem:

min
σ,u,v

‖X− σuvT ‖2F + λu‖u‖1 + λv‖v‖1

subject to ‖u‖2 = 1, ‖v‖2 = 1,
(1)

where ‖·‖F is the Frobenius norm of a matrix, the first item
in the objective function reflects the low-rank approximation
error, ‖·‖1 is the `1 vector norm to enforce the sparsity of u
and v, and λu and λv are two tuning parameters to balance
off the approximation error and sparsity regularizers. To
obtain subsequent singular vectors, the SSVD solves Eq.(1)
repeatedly using a new X which excludes subjects already
identified in a row cluster.

Now we extend the SSVD to two or more data matrices
denoted by Xk of size n-by-dk, k = 1, · · · ,m. These m
data matrices characterize the same set of subjects from m
different views. We can obtain uk and vk for each matrix
Xk by the sparse singular value decomposition of each
individual Xk, separately. However, it will not guarantee

the row clusters specified, respectively, by uk be consistent.
To make them consistent, it requires all uk, k = 1, · · · ,m,
to have non-zero components at the same positions. Notice
that the uk vectors are not necessarily the same given they
may be derived from very different features in the different
views, such as real-valued features in gene expression data
but discrete features in genetic markers.

We propose to use a binary vector ω of size n that serves
as a common factor to link the different views. We multiply
each component of uk by the corresponding component
of ω, i.e., uki = uki ωi. In other words, we represent each
vector uk by diag(ω)uk where diag(ω) is a diagonal matrix
with diagonal entries equal to ω. When ωi = 0, the i-th
components of all uk’s will be 0, and consequently, the i-th
subject will be excluded from the subgroup in all views. We
hence require the sparsity of ω instead of individual u’s in
the optimization problem as follows:

min
ω,σk,uk,vk,k=1,··· ,m

m∑
k=1

‖Xk − σkdiag(ω)ukvkT ‖2F

+ λ‖ω‖1 +
m∑
k=1

λk‖vk‖1

subject to ‖uk‖2 = 1, ‖vk‖2 = 1,

k = 1, · · · ,m,
ω ∈ Bn.

(2)

where Bn is the set that contains all binary vectors of length
n, λ, and λk are tuning parameters to balance the errors and
sparsity regularizers, and λk’s, k = 1, · · · ,m can be used
to balance between different views if certain views are more
sparse than others.

As an alternative, a restricted version of Eq(2) may
require all u’s to be the same, and then use the same
u in the approximation of all matrices Xk in Eq.(2). By
requiring u to be sparse, it can also identify consistent row
clusters across all views. Although the resultant optimization
problem is easier to solve without integer variables in ω,
it imposes an unnecessarily stringent constraint to limit the
search space only to those that satisfy u1 = u2 = · · · = um,
which rules out many potential solutions that may include
the optimal row clusters. Another alternative is to minimize
the pairwise differences between ui and uj , which suffers
from the same over-constrained problem as the exact values
of the difference are not concerned. Our problem only seeks
the indicators of whether or not a component of u is zero.

III. A FAST AND EFFECTIVE ALGORITHM

The proposed formulation (2), although is a mixed-integer
program, can be effectively solved after proper relaxations.
We design an alternating optimization algorithm to solve
problem (2) by splitting the variables into three working
sets: one set consists of u’s; one set consists of v’s; and the
last set consists of the binary variables in ω. We optimize the

2



variables in one working set at a time alternatively whereas
fixing the others.

(1) Find the optimal uk and vk with fixed ω

When ω is fixed, Problem (2) can be decomposed to
optimize with respect to each individual view. For view k,
we obtain uk and vk by solving the following optimization
problem:

min
σk,uk,vk

‖Xk − σk(diag(ω)uk)vkT ‖2F + λk‖vk‖1

subject to ‖uk‖2 = 1, ‖vk‖2 = 1
(3)

which can be solved by solving the following two sub-
problems in alternative iterations.

(a) Solve for vk when uk is fixed
We solve the following problem for the optimal ṽk by

relaxing the unit length constraint on vk. Then, we set τ =
‖ṽk‖2 and obtain vk = ṽk/τ . The singular value σk also
needs to be updated by τσk.

min
ṽk

‖Xk − σkdiag(ω)ukṽkT ‖2F + λk‖ṽk‖1.

Following the same derivation in the single-view SSVD,
each component ṽkj in ṽk can be analytically computed by
soft-thresholding as discussed in [21]. Let Xk

(i,·) and Xk
(·,j)

denote the i-th row and j-th column of the matrix Xk,
respectively. The closed-form solution of ṽk is written as:

ṽkj =


αj − β, αj > β

0, |αj | ≤ β
αj + β, αj < −β

, j = 1, · · · , d. (4)

where αj = (diag(ω)uk)TXk
(·,j)/σk and β = λk/(2σk).

(b) Solve for uk when vk is fixed
We now optimize Problem (3) with respect to uk. Again,

we relax the unit length constraint on uk first and then
rescale it back to unit length. We solve the following
problem for the best ũk. Then, we obtain uk = ũk/τ where
τ = ‖ũk‖2 and also update σk by τσk.

min
ũk

‖Xk − σkdiag(ω)ũkvkT ‖2F .

Each component ũki of ũk can be independently and analyt-
ically computed as follows:

ũki =


Xk

(i,·)v
k

ωiσk
, if ωi 6= 0

0, if ωi = 0.

, i = 1, · · · , n. (5)

(2) Find the optimal ω with fixed u’s and v’s
When all u’s and v’s are fixed in Problem (2), the

optimization problem becomes:

min
ω∈Bn

m∑
k=1

‖Xk − σkdiag(ω)ukvkT ‖2F + λ‖ω‖1

We initially solve the relaxed ω̃ which takes real values, and
then calculate the binary ω from ω̃ by proper re-scaling.
First, the above optimization problem can be re-written into
the following equivalent form when ω is relaxed:

min
ω̃
‖X− diag(ω)E‖2F + λ‖ω̃‖1

where X = [X1 X2 · · · Xm] is obtained by
concatenating the data matrices in columns, E =
[σ1u

1v1T σ2u
2v2T · · ·σmumvmT ] by concatenating the

low-rank approximation matrices in columns. Then, each
component ω̃i of ω̃ can be independently and analytically
computed as

ω̃i =


αi − β, αi > β

0, |αi| ≤ β
αi + β, αi < −β

, i = 1, · · · , n. (6)

where αi =
E(i,·)X

T
(i,·)

‖E(i,·)‖22
and β = λ

2‖E(i,·)‖22
. Formula (6) is

derived based on the same scheme in [21] as how Eq.(4) is
derived.

After obtaining ω̃, the binary vector ω can be calculated
as:

ωi =

{
1, if ω̃i 6= 0

0, if ω̃i = 0
. (7)

In order to keep the objective of Eq.(2) unchanged, we
need to update uk, k = 1, · · · ,m, accordingly as follows:

uki =

{
uki /ω̃i, if ω̃i 6= 0,

0, if ω̃i = 0,
, i = 1, · · · , n. (8)

The singular values σk will be recalculated as: σk =
σk‖uk‖2, and we normalize uk by uk = uk/‖uk‖2 for
all k = 1, · · · ,m.

Algorithm 1 summarizes the main steps in our algo-
rithm. The proposed algorithm alternates between solving
the above sub-problems until a local minimizer is reached.
For fixed λ parameters, the objective function of Eq.(2)
is bounded from below by a constant. This objective is
monotonically non-increasing when minimizing each sub-
problem, and hence the convergence of this iterative process
is guaranteed. In our experiments, when the `2 norm of the
difference vector between two consecutive ω falls below a
pre-defined threshold of ε = 10−4, we set the algorithm
to terminate. On both synthetic and real world datasets,
this iterative process reached a stationary point in about 10
iterations.

At each iteration, only simple closed-form solutions need
to be computed for each working group of variables, so the
algorithm is fast and scalable. When optimizing the m pairs
of uk and vk, the algorithm requires a computation cost
of O(nmd). For optimizing ω, the most costly steps are the
vector product of E(i,·)X

T
(i,·) and the evaluation of ‖E(i,·)‖22,

which requires a computation cost of O(md). Hence this
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Algorithm 1 Multi-view Data Matrix Decomposition

Input: Xk, λk, k = 1, · · · ,m, and λ
Output: ω, σk, uk, vk, k = 1, · · · ,m
Initialize ω with a vector of all ones
Initialize uk’s by the corresponding left singular vectors
of Xk, k = 1, · · · ,m
repeat

for k = 1 to m do
Compute ṽk by Eq.(4)
Compute vk from ṽk and update σk
Compute ũk by Eq.(5)
Compute uk from ũk and update σk

end for
Compute ω by Eqs. (6)-(7)
Update σk, uk by Eq.(8), k = 1, · · · ,m accordingly.

until The vector ω reaches a fixed point

step takes a cost of O(nmd) as well. Overall, this algorithm
takes computation time of O(nmd), which is in the linear
order of the problem dimensions. Moreover, notice that (i)
when ω is fixed, the optimization of uk, vk is independent
from each other among the views; (ii) when calculating any
of the u, v and ω vectors, each component of the vector
can be computed independently from other components of
the vector. Hence, this algorithm is readily parallelizable and
can be distributed if more processors are available to further
reduce the computation time.

To derive the subsequent row and column subgroups, we
repeat Algorithm 1 using new matrices Xk that exclude
the rows corresponding to the subjects in the identified
subgroups. By repeating this procedure, the desired number
of subject (row) subgroups can be achieved.

IV. COMPUTATIONAL RESULTS

We implemented the multi-view data matrix decomposi-
tion algorithm and validated it using a multi-site soybean
dataset. This study aims to examine whether or not our
algorithm can reveal the underlying variables, from each data
matrix (each site), that are associated with the clusters. We
compared the proposed approach against several most recent
multi-view co-clustering methods as follows.
• Single view biclustering (SVB): Clusters were in-

cluded in the comparison by running the method of
SSVD-based biclustering [21] using one view of data.
We reported the best performance when experimenting
with different views.

• Co-trained spectral (CTS): This method was proposed
in [12]. It also finds consistent row clusters based on
spectral clustering where eigenvector representations of
each view are co-trained or modified by the clustering
results from other views.

• Co-regularized spectral (CRS): This method was
proposed in [13] for finding consistent row clusters

across multiple views. It applies spectral clustering
to each view together with a co-regularization factor
applied to the eigenvector representations of different
views. We used the pairwise co-regularized formulation
in [13].

• Kernel addition (KA), Kernel product (KP) These
three baseline methods were formulated in [13] by
summation or component-wise multiplication of two
kernel matrices for use in spectral clustering. We used
the same procedure as in [13] in our experiments. We
adopted the widely used Gaussian kernel to compute
the similarity between each pair of soybean samples
grown at a location.

A. Soybean data

A total of 123 soybean species were considered. Their
morphological characters (nine of them) were evaluated
at four geographical locations in 2011 in Heilongjiang
province and Jilin province of China. For each population,
mature seeds were collected from each individual, with an
interval of >5m between individuals. Seeds were obtained
by the Institute of Crop Science of the Chinese Academy
of Agricultural Sciences and the Wuhan botanical Garden
of the Chinese Academy of Sciences. Randomized blocks
design and two replications were executed and nine adjacent
individual characters, which included plant height, number
of branch, number of main stem nod, number of pod, number
of individual seed, 100-seed weight, yield of blocks, content
of protein and content of oil, were recorded during mature
period in every replication. The average of records was
calculated and presented in the cultivar observation at each
location. Hence, in our data, although totally there were
36 characters/traits, they were grouped into four sets, each
corresponding to a geographical location.

B. Tuning of our algorithm

An important aspect to obtain good clustering perfor-
mance by our algorithms is the tuning of the hyperpa-
rameters. In the proposed approach, there are trade-off
parameters: λ for sparsity of the common factor ω, which
leads to the row clusters consistent across the views, and
λk for sparsity of the column clusters in each view (i.e.,
feature selection in each view). Since in our experiment all
the four locations of phenotypic data were equally important,
we chose to use the same value for all λk, k = 1, · · · , 4.

We experimented with various values of λ and λk’s and
observed their effects on the clustering performance. Ideally,
we want our clusters to contain a reasonable number of
samples. The clusters should not be empty but should not
contain the full set of sample either. Similiarly, for feature
selection, for each cluster, we would like to avoid the case
to select either all features or zero feature. These were the
basic and naı̈ve criteria used in our experiments to choose
appropriate values of the hyperparameters. Figure 2 shows
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the performance change when we varied the values of λ and
λk for identifying the first cluster. From the figure, we can
see many choices of λ and λk are not appropriate as they
either end up a cluster of all subjects or zero subjects or
use no or all features. Based on the figure, the values in
the bright blue color area would be good choices. We hence
chose λ = 0.18 and λk = 0.65 when we ran the algorithm
to identify the first cluster. When the second cluster was to
be identified, the hyperparametes were chosen in the same
way by drawing two figures similiar to Figure 2, and we
obtained λ = 0.16 and λk = 0.6. After two clusters were
sequentially identified, the remaining subjects were treated
as in the third cluster.

Figure 2. Cluster performance when varying λ and λk . Top: the number
of subjects in the first cluster; Bottom: the number of features on which
subjects in the first cluster differ from other subjects.

C. Clustering results

In our experiments with the soybean dataset, three clus-
ters were created: Cluster 1 consisted of only 16 soy-
bean samples; Cluster 2 was the largest and contained
77 soybean samples; and the last cluster contained the
remaining 30 samples. Our algorithm automatically selected
features/variables based on which the samples were grouped
into Cluster 1 or Cluster 2 (the rest went to Cluster 3). Traits
were selected from each of the locations for Cluster 1: 5
traits at location 1 (Branch, Pod, Seed, Yield and Percentage

of Oil); 5 traits at location 2 (Height, Branch, Nod, Pod and
Seed); 5 traits at location 3 (Height, Branch, Nod, Pod, and
Seed); and 5 traits at location 4 (Branch, Nod, Pod, Seed, and
Percentage of Oil). Based on the selected features for Cluster
2, samples in Cluster 2 were similar on 5 traits at location
1 (Nod, Yield, Weight, Percentage of Protein, Percentage of
Oil), on the Branch trait at location 2 and location 4, and
on 4 traits at location 3 (Branch, Pod, Seed and Yield).

To further demonstrate the similarity within clusters and
dissimilarity between clusters, we draw the bar plots for the
mean values of the 9 traits at each of the four locations
in Figure 3. Based on Figure 3, the most distinguishable
characteristics we can see is that samples in Cluster 1 differ
significantly from other clusters on the the traits of Branch,
Pod and Seed at locations 1 and 3. Samples in Cluster 2
differ significantly from other clusters on the trait of Branch
at locations 2 and 4. Samples in Clusters 1 and 2 differ from
the remaining cluster on the Yield trait at all locations. All of
these differences were at the significance level of p < 0.01
(with χ2-test).

D. Comparison results

All of the compared methods were used to obtain three
soybean subgroups. To evaluate the clustering performance,
we built three classifiers using each view of the data to
separate samples in one cluster from the rest. Totally, twelve
classifiers were built for each cluster solution resulted from a
comparison method. Receiver operating characteristic (ROC)
curves were plotted and the area under the ROC curve (AUC)
values were used to compare the different cluster solutions,
in other words, to compare the different methods. The
average AUC values obtained from each of the compared
methods averaged over the three clusters and over the four
locations are plotted in Figure 4.

Figure 4. The AUC comparison of the classifiers built to evaluate the
separability of the clusters resulted from each of the comparison methods.
The higher an AUC value, the better separation among the clusters. The
different methods include the proposed multi-view bicluster (MVB), single
view biclustering (SVB), co-trained spectral (CTS) clustering, co-regulaized
spectral (CRS) clustering, kernel addition (KA) and kernel product (KP).

The averaged AUC value can be treated as a measure for
separability among the clusters based on each single view
of the data. The proposed method achieved the best perfor-
mance on this measurement whereas the co-training spectral
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Figure 3. The characteristics of the three clusters viewed at each of the four locations. The average values of each trait at a location are computed for
each cluster, and plotted in four grouped bar plots, each corresponding to a location.

clustering and kernel addition methods achieved slightly
worse separability than our method. The co-regularized
spectral clustering, although a state of the art, performed
similarly to the single view biclustering. It is likely because
the co-regularization factor was applied to the eigenvector
representations of different views where eigenvectors were
those of the Gaussian kernel. This method hence did not
select features from the raw feature space rather it mapped
to an eigenvector space. Kernel product was obviously an
improper choice for the soybean data.

V. CONCLUSION

In this paper, we have proposed a multi-view sparse clus-
tering approach based on matrix decomposition of multiple
data matrices simultaneously into sparse singular vectors.
This approach links different views of data by a binary
vector that is used to enforce the row clusters from all
views to be consistent. Surprisingly, the resultant opti-
mization problem is efficiently solvable using only closed-
form formulas in alternating minimization steps. To the
best of our knowledge, our work is the first approach that
extends sparse matrix decomposition to multi-view data. As
matrix decomposition methods are the fundamental tools
for many learning tasks, the capability of extending them
to learn jointly from multiple views of data will enhance

many applications not only in co-clustering. For instance,
unsupervised dimension reduction, such as PCA, can directly
benefit from the proposed multi-view matrix decomposition
approach (e.g., PCA from multi-view SVD and kernel PCA
from multi-view eigen-decomposition).

There are a few directions for future work. It is possible
to extend the proposed approach to the case when missing
values are present in any of the views. A simple idea is to
recover the missing values in one view based on information
from other views. Theoretical analysis of co-clustering in
general has not been fully explored. Consistency analysis
of multi-view SVD-based or eigen-decomposition-based co-
clustering will provide insights into the rate of convergence
as the sample size increases. If partial data is labeled, gener-
alization of the proposed framework to the semi-supervised
setting will also be important. Although our algorithm is
computationally efficient, more empirical evaluations on
large-scale datasets might be needed to examine its speed
and scalability.
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