
Top-Down Indoor Localization with Wi-Fi
Fingerprints using Deep Q-Network

Fei Dou Jin Lu Zigeng Wang Xia Xiao Jinbo Bi Chun-Hsi Huang
Department of Computer Science & Engineering

University of Connecticut

Storrs, CT 06269, USA

{fei.dou, jin.lu, zigeng.wang, xia.xiao, jinbo.bi, chunhsi.huang}@uconn.edu

Abstract—The location-based services for Internet of Things
(IoTs) have attracted extensive research effort during the last
decades. Wi-Fi fingerprinting with received signal strength indi-
cator (RSSI) has been widely adopted in vast indoor localization
systems due to its relatively low cost and the potency for high
accuracy. However, the fluctuation of wireless signal resulting
from environment uncertainties leads to considerable variations
on RSSIs, which poses grand challenges to the fingerprint-
based indoor localization regarding positioning accuracy. In this
paper, we propose a top-down searching method using a deep
reinforcement learning agent to tackle environment dynamics in
indoor positioning with Wi-Fi fingerprints. Our model learns an
action policy that is capable to localize 75% of the targets in an
area of 25000m2 within 0.55m.

Index Terms—Indoor Localization, Wi-Fi Fingerprint, RSSI,
Deep Reinforcement Learning, Deep Q-Network, Dynamic Envi-
ronment

I. INTRODUCTION

Applications of indoor location-based service (ILBS) in

a wide range of living, commerce, production and public

services have attracted much attention recently, which sharpen

an urge for accurate and robust indoor positioning schemes.

Compared with outdoor localization, it has been challenging as

the GPS (Global Positioning System) signal, which serves as a

standard solution in outdoor localization, cannot penetrate well

in indoor environment. In the past decades, indoor localization

solutions have been explored using Wi-Fi, Bluetooth, FM

radio, radio-frequency identification (RFID), ultrasound or

sound, light, magnetic field, etc [1]. Among all the techniques,

Wi-Fi fingerprinting with RSSIs from different Wi-Fi Access

Points (APs), referred as Reference Points (RPs), has been

proven an promising approach due to its high accuracy,

simplicity and deployment practicability [2].

Wi-Fi fingerprinting usually involves two phases: an off-

line phase where RSSIs are collected from known positions to

build a fingerprint database of the environment, as well as an

on-line phase where the position is estimated by the current

captured RSSIs with those in the database.

Many machine learning algorithms such as k-nearest neigh-

bors (KNN), Naive Bayesian, support vector machine (SVM)

and neural network (NN) have been applied to find the

most probable location from the fingerprints. Some existing

works that modeled the problem as a regression problem by

predicting the coordinates of the intended position according to

current RSSI values could be very sensitive to the environment

dynamics. Others proposed classification-based solution by

dividing the floor area into small grids with some certain

sizes [3], [4]. However, higher localization accuracy requires

smaller size of those grids, thus it must redefine the partition

and requires both lots of human efforts and the floor plan

as prior knowledge. Hence, it is not scalable since new

models must be trained when different location resolutions

are required.
Moreover, the fluctuation of wireless signal leads to consid-

erable variations on RSSIs, and factors that have been observed

affecting the RSSIs include but not limited to relative humidity

level, people presence and movements, and open/closed doors

[5] in a dynamic environment. This poses grand challenges to

the positioning accuracy of fingerprint-based indoor localiza-

tion with environment uncertainty.
In this paper, we attempt to shed a light on the questions

above and propose a top-down approach to sequentially per-

form indoor localization in a dynamic environment by deep

reinforcement learning. More specifically, the proposed model

follows a hierarchical search strategy, which starts from the

whole area or a prescribed area and then progressively scales

down to the correct location of the target. The contributions

of this paper are as follows:

• Our method is proposed to take the environment dynam-

ics into concern. To fit this goal, we model the indoor lo-

calization problem as a Markov Decision Process (MDP),

where a reward guided deep Q-network (DQN) learning

agent interacts with the environment dynamically and

selects sequential actions that progressively localize the

target by transforming a bounding square window.

• We propose an accurate and efficient top-down searching

approach for indoor localization. This approach has two

main advantages: First, it doesn’t require any prior knowl-

edge of the floor plan in the indoor environment. Second,

benefiting from the hierarchical structure, our method is

capable to provide on-demand resolution of localization

depending on the preference of computational cost.

• We leverage the advantage of DQN in handling online

learning tasks since it has the ability that does not need

retraining and memorizing all the data samples when

166

2018 IEEE 15th International Conference on Mobile Ad-hoc and Sensor Systems

2155-6814/18/$31.00 ©2018 IEEE
DOI 10.1109/MASS.2018.00037

new data is received. Therefore, our localization model

permits the entire system to provide sufficient accuracy

even real-time positioning is required.

II. RELATED WORK

Reinforcement learning [6] is a machine learning approach

for optimal control and decision making processes, where

an agent learns an optimal policy of actions over the set of

states by interacting with the environment. It has a wide range

of applications, such as robotics [7], games [8]–[10], image

classification and object detection [11], [12], etc. And the

best-known successes of reinforcement learning are playing

Atari 2600 computer games [8], [9], and AlphaGo solving the

challenge of Computer Go [10].

Mnih et al. [9] introduced DQN and kick-starts the revolu-

tion in deep reinforcement learning. It presented the first deep

reinforcement learning model to successfully learn control

policies directly at a human level from high dimensional

sensory input which are only raw image pixels. [9] stabilized

the training of value function approximation using experience

replay and target network with convolutional neural networks

(CNN), and it also designed a reinforcement learning approach

with only the image pixels and the game score as inputs.

AlphaGo [10] had made historical events by beating several

human world champions in Go and became a milestone in

artificial intelligence. This hybrid deep reinforcement system

was built with techniques of reinforcement learning, deep

convolutional neural network and Monte Carlo tree search

(MCTS).

In the field of IoT, the work presented in [4] proposed a

semi-supervised deep reinforcement learning model in support

of smart IoT services. It leverages more abstract features

from both labeled and unlabeled data by adopting variational

autoencoders (VAE) [13], and then applies the deep reinforce-

ment model on the extracted features to infer the classification

of unlabeled data. The proposed model contains two deep

networks that learn the best policies for taking optimal actions.

For indoor localization with Wi-Fi RSSIs in IoT, many

machine learning approaches have been proposed. Yang et

al. [14] proposed a KNN-based method by investigating the

sensors integrated in modern mobile phones and user motions

to construct the radio map of a floor plan. [15] adopted the

model-based classification approach based on SVM. In [3],

a four-layer deep neural network (DNN) generates a coarse

positioning estimation by dividing indoor environment into

hundreds of square grids.

[16] assessed some literature reviews and compared the

performance of the most popular machine learning approaches

to Wi-Fi fingerprinting, e.g. weighted k-nearest neighbors,

Naive Bayes, neural network. It suggested that with only

the Wi-Fi RSSI as the measurement metric, many complex

algorithms may not perform as well as simpler ones. Despite

the simplicity of weighted k-nearest neighbors method, it

excelled in most fingerprinting reviews. So no wonder why

KNN is the most widely applied benchmark algorithm in Wi-

Fi fingerprinting based indoor localization problems.

III. INDOOR LOCALIZATION AS A DYNAMIC MARKOV

DECISION PROCESS

Markov Decision Process (MDP) [6] probabilistically

models a goal-oriented agent that keeps interacting with the

environment, and thereafter decides the action picked from

the prescribed action space in sequences. In this section, we

model our problem as a dynamical decision-making process,

rather than a regression problem predicting the coordinates of

the target, or a classification problem where classes represent

the coarse region grids.

Step 1 Step 2 Step 3 Step 4 Terminate

target

Fig. 1: Illustration of MDP

The process is shown in Fig. 1. In our case, the geometry

and the RSSI signals on the single floor are defined as the

environment, within which the agent shifts and transforms a

bounding square window via a series of actions, and moves to

the next state after taking a specific action under the current

state. When the targeted object enters the environment and

receives any RSSI signal, the agent is expected to localize it

progressively by bounding it with a small enough window.

In the localization process, the agent should determine at each

step how to slide and reshape the window to efficiently localize

the target within a number of steps as small as possible.

MDP is parameterized with several components: action

space A, the state space S, and the corresponding reward

function r. Details will be explained in the following parts.

A. Localization Actions

UP-LEFT UP-RIGHT DOWN-LEFT DOWN-RIGHT CENTER

Fig. 2: Five actions in formulated MDP

To serve the purpose of efficient localization, our proposed

action space A composes of finite actions applied to the

square window. Fig. 2 presents the exact five actions denoted

as “UP-LEFT”, “UP-RIGHT”, “DOWN-LEFT”, “DOWN-

RIGHT” and “CENTER”. The window, subjected to the ac-

tion, is uniquely characterized by a vector ot at time step t
(∀t > 0) with its center coordinates and radius, written as

ot = [ct, radt], where ct represents the coordinates of the

current window center (xt, yt) and the radius radt denotes

the half-length of the window’s side.

Specifically, with respect to the action on ct, namely the

determination of shift distance from the current window to the

next, we elaborate the predefined rules on ct+1 as below:

167

• “UP-LEFT”:

ct+1 = (xt+1, yt+1) = (xt − radt/2, yt + radt/2)
• “UP-RIGHT”:

ct+1 = (xt+1, yt+1) = (xt + radt/2, yt + radt/2)
• “DOWN-LEFT”:

ct+1 = (xt+1, yt+1) = (xt − radt/2, yt − radt/2)
• “DOWN-RIGHT”:

(ct+1 = xt+1, yt+1) = (xt + radt/2, yt − radt/2)
• “CENTER”:

ct+1 = (xt+1, yt+1) = (xt, yt)

One can observe the center either keeps unchanged or

moves to an arbitrary center of four quarters in the pre-

vious window. Concretely, the transformations are obtained

by adding or removing some scale of the radius to x or

y coordinates depending on the desired effect. Besides, we

propose the action on rad at the time t+1 following a scaling

rate as:

radt+1 = α× radt (1)

where α ∈ (0, 1] is the shrinkage ratio on radius between two

adjacent time steps.

Soft-Scaling Hard-Scaling Adaptive-Scaling

Fig. 3: Three variants of scaling strategy

The value of α needs to be carefully determined since

it can considerably influence the complexity of searching

space. Intuitively, increasing α is possible to guarantee a

sufficient coverage with a compromise on efficiency, however,

decreasing α is more efficient but risky to lose the object. We

empirically explored it on three variants, shown in Fig. 3:

• Soft-Scaling: Fixed Rate and Overlapping.

Rate α is a fixed number in (0.5, 1], resulting in a

overlapping condition of each down scaled window.

• Hard-Scaling: Fixed Rate and Non-Overlapping.

Rate α is a fixed number 0.5, resulting in a non-

overlapping condition of each down scaled window.

• Adaptive-Scaling: Non-Fixed Rate.

The starting rate α0 at the first step is set to be 0.5 in

order to make it faster to focus on the expected region

of the whole area, as well as not to lose the object. The

rate will be increased with each step and infinitely close

to the ending rate αend, a number in (0.5, 1] to perform

a delicate and precise localization in final steps:{
α0 = 0.5
αt+1 = e−λ × αt + (1− e−λ)× αend

(2)

where λ is a parameter in (0, 1) to control the speed of

the rate augmentation.

In all three scaling strategies, α acts as a role to trade off

between learning speed and localization accuracy, which needs

to be explored further.

B. State

The state S in our formulated MDP is composed to describe

the information of the current step. The representation is a

tuple s = (RSSI,o,h), defined as follows:

• a vector RSSI of all RSSI values.

• a vector o with the center coordinates and radius, written

as o = [c, rad], where c represents the coordinates of

the current center (x, y) and radius rad denotes half the

length of the square window’s side.

• a vector h, recording the history of taken actions in each

searching round.

The history vector h captures all the actions that the agent

performs during each searching round for detecting a target.

We encode h as a one-hot vector, and each action in h is

represented by a 5-dimensional binary vector where all the

values within are zeros, except the one corresponding to the

taken action, set to be 1.

The history vector encodes n past actions, leading to

h ∈ R
5n. Here n depends on the largest number of steps

to localize the target in the indoor environment. Although the

history vector is a relatively low-dimensioned vector compared

with the environment information vector RSSI that contains

a large number of RSSI values, it is enough to inform what

happened in the past and stabilize searching trajectories.

C. Reward Function

The reward function r reveals the improvement that the

agent achieves to localize an object after choosing a specific

action. The agent gets a positive reward when the action pushes

the region window closer to the target, while a negative reward

is gained when the action makes the window further away

from the target. The improvement in our model is measured

using the Intersection-of-Window (IoW) between the target

square window and the predicted window given by a particular

action. The reward function can thereafter be attained by the

calculation of the improvement from one state to it’s next state.

Let w denote the current window, and wg is the ground

truth square window of the target. Then the IoW between w
and wg is a number in [0, 1] and defined as

IoW (w,wg) = area(w ∩ wg)/area(w) (3)

where area denotes the area of a window.

In our top-down searching scheme, the region window

scales down to the target. At the step t, the agent gains a

positive reward if IoW of the next state st+1 is larger than

that of the current state st, meaning that the agent chooses a

”correct” action to get closer to the target. Namely, the correct

action keeps the target inside the window as well as having

the size of the window smaller. A large positive reward will be

assigned to the agent and terminate searching if it successfully

localizes the target in a proper way, when IoW of the current

state exceeds a threshold δ. Otherwise, when the agent chooses

a ”fatal” action, leading the window further away from the

target, it terminates the searching process and receives a large

negative penalty.

168

When the agent chooses the action at, causing the transfer

from state st to its next state st+1, the reward function

rat(st, st+1) is defined as:

rat
(st, st+1) =

⎧⎪⎪⎨
⎪⎪⎩

+η if IoW (wst+1 , wg) ∈ [δ, 1]
+τ if IoW (wst+1 , wg)

∈ (IoW (wst , wg), δ)
−η otherwise

(4)

In Equation (4), the stop rewards η take the absolute

value of 3.0, so the agent receives a +3.0 reward when

it successfully localizes the target and gets feedback of a

−3.0 penalty when a ”fatal” action is made. The intermediate

transformation reward τ is set to be 1 as the feedback to a

correct action when the window gets closer to the target. The

threshold value δ is set to be 0.5, indicating the minimum

IoW value allowed to consider a successful detection in the

procedure of localization in our proposed model.

IV. LOCALIZATION WITH DEEP Q-NETWORK

With the components of a MDP formulated above, the goal

of the agent is to find a series of windows to zoom into the

region of the target by selecting multiple actions. Fig. 4 shows

the framework of our proposed top-down model that uses deep

Q-network to perform localization for an indoor object using

RSSI values.

Input Layer Hidden Layers Output Layer

RSSI

Window
Initialization

action
history

state

action

Input Initialization Deep Q-Network

512
units

512
units

fully
connected

fully
connected

Fig. 4: Deep Q-Network for Indoor Localization

A. Window Initialization

There are two approaches to initialize the square window

o0 = [c0, rad0]. For the first approach, denoted as Gen-

eral Initialization, assume all data samples are horizontally

bounded by maximum longitude lonmax and minimum lon-

gitude lonmin, and vertically bounded by maximum latitude

latmax and minimum latitude latmin. We set c0 as the center

of the bounded rectangular, and set rad0 large enough to

guarantee the full coverage of our interested area. Specifically,

we define the initial square window as follows:{
c0 = (x0, y0) = (lonmax+lonmin

2 , latmax+latmin

2)

rad0 = max(lonmax−lonmin,latmax−latmin)
2 + radgt

(5)

where radgt denotes the radius setting of the target window,

which defines how small of the target window we’d like

to have and also indicates the localization resolution to be

achieved.

Another approach to get the initial window is applying

some machine learning algorithms to estimate the approximate

location of the target according to the corresponding RSSI

values, such as KNN or other algorithms. And then select a

comparatively small radius to give it a warm start to allow

the initial window to fully cover the target window. We will

discuss these two initialization approaches in our experiment

section.

B. Deep Q-Network for Localization

1) Model Overview: In a deep Q-network approach [9], we

consider tasks in which an agent interacts with an environment

E by a sequence of actions, observations and rewards. At each

time-step t, the agent observes the current state st, selects an

action at from the action space A, and receives a reward rt
representing the improvement, and then goes to the next state

st+1.

The goal of the agent is to interact with the environment by

selecting actions and learn a policy π that maximizes the total

future rewards. In [9], the standard assumption is that future

rewards are discounted by a factor γ for each step. Define the

future discounted return at time t as Rt =
∑T

t′=t γ
t′−trt′ ,

where T is the step at which the searching round terminates.

The optimal action-value function Q∗(s, a) w.r.t s and a is

defined as the maximum expected return achieved, after seeing

s and then taking action a:

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π] (6)

where π is a policy mapping distributions over actions π =
P (a|s).

Q∗(s, a) obeys the Bellman Equation [6], which is based on

the following intuition: if the optimal value Q∗(st+1, at+1) of

a state st+1 at the next time-step was known for all possible ac-

tions at+1, then the optimal strategy is to select the action at+1

that maximizing the expected value of rt + γQ(st+1, at+1):

Q∗(st, at) = Est+1∼E [rt + γmax
at+1

Q∗(st+1, at+1)|st, at] (7)

Reinforcement learning algorithm needs to estimate

the action-value function by using the Bellman

Equation as an iterative update, Qi+1(st, at) =
E[rt + γmaxat+1

Qi(st+1, at+1)|st, at], where i denotes

the ith iteration. Such value iteration algorithms converge

to the optimal action-value function, Qi → Q∗ as i → ∞.

In practice, this basic approach is impractical, because the

action-value function is estimated separately for each state,

without any generalization. Instead, it is common to use a

function approximator to estimate the action-value function,

Q(s, a; θ) ≈ Q∗(s, a). We use neural network function

approximator with weights θ, referred as a Q-network, to

estimate the optimal action-value function. This Q-network

can be trained by adjusting the parameters θi at iteration i to

reduce the mean-squared error in the Bellman Equation, where

the optimal target values, rt + γmaxat+1
Q∗(st+1, at+1),

169

Algorithm 1: Deep Q-Network for Indoor Localization

Data: A dataset containing RSSI values and labeled coordinates D : {RSSIl, (xl, yl)}
Input: environment parameters: g, radgt, α, δ; agent parameters: γ, ε, M

1 Randomly initialize DQN parameters θ;

2 for iteration← 0, . . . , N do
3 for each data sample di in D do
4 Get initial coordinates (xi

0, y
i
0) and initial radius rad0 ;

5 Initialize hi;

6 Initialize s0 = (RSSIi, (xi
0, y

i
0), rad0,h

i);
7 for t← 0, . . . , T do
8 Select a random action at with probability ε, otherwise select at = maxaQ

∗(st, at; θ);
9 Execute action at as to get a reward rt, new center (xi

t+1, y
i
t+1), new radius radit+1 and transform from

current state st to its next state st+1 : (RSSIi, (xi
t+1, y

i
t+1), rad

i
t+1,h

i) ;

10 Update hi with at;
11 Store transition (st, at, rt, st+1) in replay memory M;

12 Sample random mini batch of transitions (sj , aj , rj , sj+1) from M;

13 Set yj = rj + γmaxat+1
Q(st+1, at+1; θ);

14 Calculate gradient descent according to Equation 10 and update θ by Adam [17] and Dropout [18].

are substituted with approximate target values

yi,t = rt + γmaxat+1 Q(st+1, at+1; θ
−
i), using previous

network parameters θ−i . The Q-learning update in iteration i
follows the below loss function:

Li,t(θi) = Est,at∼ρ(.)[(yi,t −Q(st, at; θi))
2] (8)

where

yi,t = Est+1 [rt + γmax
at+1

Q(st+1, at+1; θ
−
i |st, at] (9)

is the target for iteration i and ρ(s, a) is a probability distri-

bution over states s and actions a which are referred to as

the behavior distribution. At each stage of optimization, the

parameters from the previous iteration θ−i are held fixed when

optimizing the ith loss function Li(θi). Differentiating the loss

function with respect to the weights we arrive at the following

gradient,

∇θiLi,t(θi) =Est,at,st+1
[(rt + γmax

at+1

Q(st+1, at+1; θ
−
i)

−Q(st, at; θi))∇θiQ(st, at; θi)]
(10)

2) Components for Deep Q-Networks: Our algorithm

framework for solving the DQN model is presented in Algo-

rithm 1. To be more self-contained, several involved techniques

are detailed as below.

• Discounted Factor To have a better performance in the

long-run, not only the most immediate rewards but the

future ones will also be taken into account. We use the

discounted reward from Bellman Equation with a value

of γ = 0.1. We set the gamma low since we are more

interested in the current rewards, but still give a balance

between the immediate rewards and future ones.

• Explore-Exploitation The policy used during training is

ε-greedy [6], which gradually shifts from exploration to

exploitation according to the value of ε. For exploration,

the agent selects random actions and collects multiple

experiences, while for exploitation, the agent selects

greedy actions according to already learned policy, and

then learns from its own successes and mistakes. In our

settings, the ε-greedy policy starts with ε = 1 which

means a random choice of action, and decreases to ε = 0
with εi+1 = 0.995× εi at each iteration.

• Experience Replay It is a technique [8], [19] where

we store the agent’s experiences at each time-step,

mt = (st, at, rt, st+1) in a Experience Replay Memory

M = m1,m2, . . . ,mN . During each training stage, we

sample the Q-learning updates using mini bathes from

samples of the stored experiences, m ∼ M, drawn

randomly/weighted from the pool of the memory. In our

settings, we use an experience replay of 2000 experiences

and a batch size of 100.

• History Vector As we discussed in Section III-B, we

capture all the actions for each data sample during each

iteration in the search for the target. The total number of

steps for the agent to find the target in each searching

round depends on the initial window’s size, the scaling

strategy, and the radius of the target window. However,

using arbitrary length as inputs to the neural network can

be difficult. In our settings, we fix the length of the history

actions representation, recording at most recent 10 actions

for each target during each iteration, thus, h ∈ R
50. If

the agent stops at a specific step t < 10, then the rest of

the history vector will be filled with 0s.

V. EXPERIMENTS AND EVALUATIONS

A. Data Description

The dataset used to verify our proposed model is the

UJIIndoor Loc dataset [20], which was collected in real-world

170

(a) Avg. Steps per Iteration (b) Avg. Rewards per Iteration

(c) Avg. IoW per Iteration (d) Avg. Dist. Error per Iteration

Fig. 5: Training performance on different scaling strategies

under radgt = 0.5m (Hard Scaling with α = 0.5, Adaptive

Scaling with λ = 0.2, starting rate α = 0.5, ending rate α =
0.6, and Soft Scaling with α = 0.6

including 3 buildings with 4 or 5 floors by more than 20 users

using 25 different models of mobile devices within several

months. The dataset covers a surface of 108703m2 in Univer-

sitat Jaume I and consists of 19937 training/reference records

and 1111 validation/test records. The number of different APs

appearing in the database is 520.

Since our algorithm is proposed to perform indoor local-

ization in a 2D area and given that the UJI dataset describes a

multi-building multi-floor environment, we select the data in

Building 1 Floor 1 (B1F1) from the dataset, covering an area

of approximate 25000m2 (150m× 160m) and randomly split

it into the training set and the test set with a ratio of 0.8 : 0.2.

Considering the body of a human being, we choose the

target square window with the radius radgt = 0.5m, which

should be small enough to indicate the position of a person in

an indoor environment.

To simulate the environment dynamics, we inject noise

into the input of the DQN in every decision-making step. [5]

analyzed quantitative effects of those dynamic environmental

factors like people, doors, humidity, and the measurement

results demonstrate the average vibration on RSSI are approxi-

mately 8 dBm, 9 dBm and 0.8 dBm respectively. In our model,

we generate the centered Gaussian noise N (0, σ2) with the

standard deviation σ = 10 to analog the approximate 10 dBm

variations of RSSIs caused by environment uncertainty.

B. Training Evaluation

We train our DQN agent in an online fashion by selecting

the data samples one by one for N = 1000 iterations and

evaluate the average total steps, the average total rewards, the

average IoW and the average distance error at the end of each

iteration. Next we present the configuration for the training

procedure.
1) On Different Scaling Strategy: In Fig. 5, we explore

the training performance of different scaling strategies on our

proposed DQN model. It illustrates that Hard Scaling needs

the least steps to find the target on average, compared with

Adaptive Scaling and Soft Scaling. Fig. 5b shows rewards

are accumulated as the training iterations incenses, suggesting

DQN learns the pattern from the localization samples gradu-

ally. Fig. 5c shows it takes about 300 iterations for the agent to

achieve a value above 0.5 of average IoW under Hard Scaling,

while the other two strategies show lower training efficiency,

where Adaptive Scaling requires 800 iterations to achieve

the same performance, and agent using Soft Scaling strategy

shows difficulty to be trained well within 1000 iterations. The

performance of an agent using Soft Scaling strategy illustrated

in Fig. 5a, Fig. 5b and Fig. 5c all indicate that the agent

still needs more time to be successfully trained after 1000

iterations. The training error for distance, measured by the

distance between the center of the current window and the

target window, shown in Fig. 5d doesn’t imply remarkable

difference among those three scaling strategies, while the

Adaptive Scaling strategy outperforms slightly than the others.
2) On Different Initialization: [16] illustrated that KNN

algorithms serve as the benchmark methods on indoor posi-

tioning because of its simplicity and accuracy. Thus, we con-

sider the initialization with KNN-based algorithm denoted as

KNN Initialization, to compare with our General Initialization

approach.

(a) Avg. Dist. Error (b) Error > 20m (c) Error > 30m

Fig. 6: Performance on different KNN algorithms & percent-

age of outliers with different distance errors

We evaluate KNN Intialization with two variants of KNN

algorithms: the first is vanilla KNN where the k neighbors con-

tribute equally to the estimation, while the second is weighted-

KNN, which computes the inverse of RSSI distance as the

weight of each neighbour’s contribution, so as to emphasize

the importance of the closer neighbour during the prediction.

Fig. 6a draws the plot of the average distance error vesus the

number of neighbors, while Fig. 6b and Fig. 6c illustrates the

percentage of predicted examples with high error (outliers),

from our observation, taking the balance between estimation

accuracy and percentage of outliers into the concern, we

choose the weighted-KNN with 5 neighbors as our window

initializer and initialize the square window with the radius

rad0 = 30m.

Fig. 7 shows the training performance of our proposed

model under different initialization. As expected, the num-

171

(a) Avg. Steps per Iteration (b) Avg. Rewards per Iteration

(c) Avg. IoW per Iteration (d) Avg. Dist. Error per Iteration

Fig. 7: Training performance on different initialization ap-

proaches under radgt = 0.5m and hard scaling strategy)

ber of steps increases when the agent is trained with more

iterations and will become stable thereafter. Our model with

General Initialization needs 2 more steps to locate the target

than KNN initialization, shown in Fig. 7a, resulting in more

necessary amount of rewards observed in Fig. 7b.

From Fig. 7c, we can see when the number of iterations

reach approximately at 350, the agent is almost well-trained to

localize the target successfully since we set the IoW threshold

δ = 0.5. Further, one can inform from the same figure that

both the two initialization schemes need about 350 iterations to

achieve a value above 0.5 for average IoW , despite that KNN

Initialization speeds up the training process at the beginning.

In Fig. 7d, the distance error could be dramatically de-

creased to about 4 meters within 15 iterations training when

using an KNN Initialization. However, it is necessary to keep

training the agent since we need both a small distance error

as well as a small region window bounding the target area by

scaling down with more time-steps.

C. Test Evaluation

We carried out our experiments on the test dataset using

the trained models and computed Cumulative Distribution

Function (CDF) with respect to the distance error under

various configurations of the model.

1) Scaling Strategy Selection: We evaluate the perfor-

mance of our model under different scaling strategies to

explore the optimized setting for our model.

We can tell from Fig. 8 that within 90% percentile of

CDF, Hard Scaling strategy always performs the best and

Adaptive Scaling strategy performs slightly worse. For Soft

Scaling, when the scaling rate α is smaller, i.e., α = 0.6, our

method shows better performance than the performance when

α = 0.7. The reason could be that the agent needs more steps

Fig. 8: CDF of distance error on different scaling strategies

under radgt = 0.5m (Hard Scaling with α = 0.5, Adaptive

Scaling with λ = 0.2, starting rate α = 0.5, ending rate α =
0.6, and Soft Scaling with α = 0.6 and α = 0.7)

to reach the satisfactory region with a larger α, which results

from a larger searching space, making it difficult to train an

efficient agent. The results of Adaptive Scaling justifies the

above reason since the number of steps needed is between the

other two strategies. Overall, we select Hard Scaling strategy

to achieve a better performance in our model in the following

sections.

Fig. 9: CDF of distance error on different initialization with

different environment settings, under radgt = 0.5m and Hard

Scaling strategy

2) Initialization Selection: We train our model with Hard

Scaling strategy and radgt = 0.5m to compare the perfor-

mance of the proposed model using different initialization

strategies: General Initialization and KNN Initialization. Fig. 9

shows the performance under dynamic environment and static

environment. It illustrates that General Initialization performs

much better than KNN Initialization when conducting local-

ization task in a dynamic environment, which verifies the sole

DQN has enough capacity for our localization tasks with both

types of environments. Thus, in the later section, we test our

model using a General Initialization.

3) Performance Comparison with Other Learning Algo-
rithms: From the discussion above, we select the trained

model with Hard Scaling strategy, using General Initialization,

and radgt = 0.5m and 0.8m in a dynamic environment, where

the environment noise is Gaussian with σ = 10 applied in

every step of searching.

We compare our proposed model with uniform weighted

KNN (U-KNN), distance weighted KNN (D-KNN), Random

Forest, Lasso Regression as well as Ridge Regression in Fig.

10, and the details are shown in TABLE I and II. It manifests

172

Fig. 10: Performance comparison with different algorithms

that among classic machine learning algorithms, KNN-based

method excelled the others, as illustrated in [16]. But our

proposed model outperforms all these evaluated algorithms

significantly, improving the performance by at least 91%

regarding the 75% percentile localization over the bench-

mark KNN-based method. Specifically, our method is able to

achieve the performance of localizing 30%, 50% and 75%

of the targets within 0.25m, 0.31m and 0.55m respectively,

while the two KNN-based models could only achieve a 75%

localization percentage within 6.2m.

Percentile 30% 50% 75%

DQN(0.5m) 0.25507976 0.31761706 0.5529171
DQN(0.8m) 0.42925235 0.60638235 0.81489037

D-KNN 1.03801639 2.75196774 6.19801714
U-KNN 1.11440207 2.94827254 6.02964302

RandomF 1.80340348 3.59024213 8.02614405
Lasso 6.50315978 9.90122459 16.10549175
Ridge 6.55371385 9.91698091 16.05958819

TABLE I: Comparison of accuracy under different percentiles

We also conduct an experiment with a larger radgt set

as 0.8m, indicating a coarser localization accuracy compared

with the case of radgt = 0.5m. A very interesting observation

can be found that the model trained with radgt = 0.5m could

localize 75% of the targets within 0.55m, while the one trained

with radgt = 0.8m achieves the same percentage within

0.81m. It implies that the prediction error of our proposed

model can be reduced to less than 1-meter. This could be a

result of the selection of the target window size w.r.t. radgt,
since smaller size leads to higher accuracy. During the training

phase, our model learns an optimal policy of actions that

intends to find a small enough bounding window, satisfying

the condition that IoW is greater than the threshold δ.

Moreover, compared with the KNN-based benchmark

method, our proposed model is more time-efficient during the

localization phase. The KNN model always requires massively

calculating the distance between each pairs of samples in the

dataset to find the nearest neighbors, while our model only

needs much shorter time (apprx. tens of milliseconds) to even

localize the target in a few window-scaling steps once the

agent is learned successfully, and could be easily applied in

real time fashion.

4) Robustness Analysis: Next, we evaluate the performance

of our proposed model under different dynamic environments.

Dist. Err(m) <0.5 <0.6 <0.8 <1 <6

DQN(0.5m) 71.71% 75.08% 76.43% 76.43% 84.85%
DQN(0.8m) 45.45% 49.83% 74.41% 78.79% 87.54%

D-KNN 26.93% 27.61% 27.61% 28.95% 73.74%
U-KNN 26.26% 27.27% 27.27% 28.28% 74.75%

RandomF 13.13% 15.15% 16.49% 19.19% 62.96%
Lasso 0% 0% 0.67% 1.35% 23.23%
Ridge 0% 0% 0% 1.35% 23.23%

TABLE II: Comparison of percentiles under different accuracy

(a) radgt = 0.5m (b) radgt = 0.8m

Fig. 11: CDF of distance error under different dynamics with

Gaussian Noise (σ = 0, 3, 10) inserted into the input of the

deep-Q network for every step during each searching round

We add Gaussian Noise to the RSSI values in every

decision-making step of the MDP to simulate the environ-

ment dynamics. Fig. 11 shows that our proposed model even

performs better in a dynamic environment, especially for

the approximately real-world dynamic with a Gaussian noise

where σ = 10, according to the analysis by [5] that the

average vibration on RSSI in real world due to the effects

of those dynamic environmental factors like people and doors

is approximately 10 dBm.

This can be explained by the adaptive ability of DQN

methodology to the dynamical environment. A very recent

study [21] also confirms that noise drives exploration in many

methods for reinforcement learning and enforces the model to

be less-sensitive to the small variance on input. Our result also

suggests that our model should be capable to track the target

when it is a moving object.

5) On-demand Resolution Analysis: Our top-down ap-

proach for searching the target in the environment has two

main advantages. First, our model can be readily applied

to various environment since it doesn’t require either prior

knowledge of the floor plan, or predefined grids partitioning

the whole area. Second, our model is capable of performing

localization with on-demand resolution, determined by how

many the searching steps are adequate to scale down the

window according to one’s needs: the proposed method can

save time and computational costs by terminating at the earlier

searching step; it also can position the target with a smaller

window by searching deeper on the preference of localization

resolution. Therefore, The hierarchical structure enables to get

rid of tedious re-training process, which is compulsory for

other existing methods, when calling for different localization

resolutions.

173

(a) radgt = 0.5m (b) radgt = 0.8m

Fig. 12: CDF of distance error on different steps under General

Initialization, radgt = 0.5m and 0.8m, Hard Scaling, σ = 10

Fig. 12 shows the prediction results of model output at

different steps. Step 8 is our last step, representing a resolution

of 0.5m (equivalent to drawing small grids on a floor area

with a side of 1m) in Fig 12a, and step 7, 6, 5, 4 indicates

localization resolution of 1m, 2m, 4m, 8m respectively. It

shows that our model could provide different localization

resolution on each steps depending on one’s preference. It

can be observed that when the number of steps is equal or

larger than 6, the performance doesn’t dramatically degenerate

as the number of steps decreases, implying our method can

well approximate the location of the target even in a shallower

search. Fig. 12b also illustrates lower accuracy in general when

the number of steps is less than 6, which is in our expectation

since the radius rad is so large that the window can only

provide a relatively coarse region.

VI. CONCLUSION

In this paper, we develop a deep reinforcement learning

scheme for Wi-Fi fingerprinting based indoor localization,

which could handle both the variation of RSSIs due to en-

vironment dynamics, and online learning that is required for

real-time positioning. It takes advantage of a top-down search-

ing strategy to provide on-demand resolution of localization

depending on the preference of computational cost; benefiting

from the hierarchical structure, our proposed method also

doesn’t require the prior knowledge of floor plan. Various

experimental results demonstrate that our method achieves

state-of-the-art performance on localization with Wi-Fi signals.

Although the evaluation is based on a specific dataset, it is

strong enough to suggest that using a top-down DQN approach

will likely lead to a higher accuracy and better scalability

in practice. Based on our experiments, we foresee that the

decision-making process interacting with the environment has

a potential to be transferred to other application scenarios such

as target tracking.

REFERENCES

[1] Suining He and S-H Gary Chan. Wi-fi fingerprint-based indoor position-
ing: Recent advances and comparisons. IEEE Communications Surveys
& Tutorials, 18(1):466–490, 2016.

[2] Simon Yiu, Marzieh Dashti, Holger Claussen, and Fernando Perez-Cruz.
Wireless rssi fingerprinting localization. Signal Processing, 131:235–
244, 2017.

[3] Wei Zhang, Kan Liu, Weidong Zhang, Youmei Zhang, and Jason Gu.
Deep neural networks for wireless localization in indoor and outdoor
environments. Neurocomputing, 194:279–287, 2016.

[4] Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani, and Jun-Seok Oh.
Semi-supervised deep reinforcement learning in support of iot and smart
city services. IEEE Internet of Things Journal, 2017.

[5] Yi-Chao Chen, Ji-Rung Chiang, Hao-hua Chu, Polly Huang, and
Arvin Wen Tsui. Sensor-assisted wi-fi indoor location system for
adapting to environmental dynamics. In Proceedings of the 8th ACM in-
ternational symposium on Modeling, analysis and simulation of wireless
and mobile systems, pages 118–125. ACM, 2005.

[6] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[7] Chelsea Finn and Sergey Levine. Deep visual foresight for planning
robot motion. In Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on, pages 2786–2793. IEEE, 2017.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. In Deep Learning, Neural Information
Processing Systems Workshop, 2013.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[11] Miriam Bellver, Xavier Giró-i Nieto, Ferran Marqués, and Jordi Torres.
Hierarchical object detection with deep reinforcement learning. Deep
Reinforcement Learning Workshop (NIPS), 2016.

[12] Juan C Caicedo and Svetlana Lazebnik. Active object localization with
deep reinforcement learning. In Computer Vision (ICCV), 2015 IEEE
International Conference on, pages 2488–2496. IEEE, 2015.

[13] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and
Max Welling. Semi-supervised learning with deep generative models.
In Advances in Neural Information Processing Systems, pages 3581–
3589, 2014.

[14] Zheng Yang, Chenshu Wu, and Yunhao Liu. Locating in fingerprint
space: wireless indoor localization with little human intervention. In
Proceedings of the 18th annual international conference on Mobile
computing and networking, pages 269–280. ACM, 2012.

[15] Duc A Tran and Cuong Pham. Fast and accurate indoor localization
based on spatially hierarchical classification. In Mobile Ad Hoc and
Sensor Systems (MASS), 2014 IEEE 11th International Conference on,
pages 118–126. IEEE, 2014.

[16] Khuong An Nguyen. A performance guaranteed indoor positioning
system using conformal prediction and the wifi signal strength. Journal
of Information and Telecommunication, 1(1):41–65, 2017.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[19] Long-Ji Lin. Reinforcement learning for robots using neural networks.
Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Com-
puter Science, 1993.

[20] Joaquı́n Torres-Sospedra, Raúl Montoliu, Adolfo Martı́nez-Usó, Joan P
Avariento, Tomás J Arnau, Mauri Benedito-Bordonau, and Joaquı́n
Huerta. Ujiindoorloc: A new multi-building and multi-floor database
for wlan fingerprint-based indoor localization problems. In Indoor Po-
sitioning and Indoor Navigation (IPIN), 2014 International Conference
on, pages 261–270. IEEE, 2014.

[21] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob
Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis
Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
Proceeding of International Conference of Learning Representations
(ICLR), 2018.

174

