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Abstract

Background: Although substance use disorders (SUDs) are heritable, few genetic risk factors for them have been
identified, in part due to the small sample sizes of study populations. To address this limitation, researchers have
aggregated subjects from multiple existing genetic studies, but these subjects can have missing phenotypic
information, including diagnostic criteria for certain substances that were not originally a focus of study. Recent
advances in addiction neurobiology have shown that comorbid SUDs (e.g., the abuse of multiple substances) have
similar genetic determinants, which makes it possible to infer missing SUD diagnostic criteria using criteria from
another SUD and patient genotypes through statistical modeling.

Results: We propose a new approach based on matrix completion techniques to integrate features of comorbid
health conditions and individual’s genotypes to infer unreported diagnostic criteria for a disorder. This approach
optimizes a bi-linear model that uses the interactions between known disease correlations and candidate genes to
impute missing criteria. An efficient stochastic and parallel algorithm was developed to optimize the model with a
speed 20 times greater than the classic sequential algorithm. It was tested on 3441 subjects who had both cocaine
and opioid use disorders and successfully inferred missing diagnostic criteria with consistently better accuracy than
other recent statistical methods.

Conclusions: The proposed matrix completion imputation method is a promising tool to impute unreported or
unobserved symptoms or criteria for disease diagnosis. Integrating data at multiple scales or from heterogeneous
sources may help improve the accuracy of phenotype imputation.
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Introduction
Substance use disorders (SUDs) are common, complex
diseases that are difficult to treat and impose a substan-
tial public health burden. According to the 2015 National
Survey on Drug Use and Health [1], there were 27.1 mil-
lion Americans (10.1% of total) aged 12 or older who
used an illicit drug in the past 30 days and approximately
7.7 million who had a SUD related to the use of illicit
drugs. Alcohol use is even more common with approxi-
mately 138.3 million Americans aged 12 or older reporting

*Correspondence: jinbo.bi@uconn.edu
1Department of Computer Science and Engineering, University of
Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT, USA
Full list of author information is available at the end of the article

current use and 15.7 million suffering from an alcohol use
disorder (AUD). Substance use can lead to a wide range
of health problems, including toxic effects (e.g., fatal over-
dose), other effects of intoxication (e.g., accidental injury)
and diseases due to chronic exposure, such as cirrhosis
of the liver, blood-borne infection (e.g., HIV) and men-
tal disorders (e.g., psychosis) [2]. It was estimated that
about 300,000 deaths attributable to SUDs in 2015 world-
wide [3], and 0.7% of global disability-adjusted life years
(DALYs) attributable to SUDs in 2015 [4]. The effective-
ness of treatments for SUDs is limited, in part due to
an inadequate understanding of their genetic basis, which
limits medications development. To date, there has been
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limited success in the identification of variation contribut-
ing to risk of SUDs through genome-wide association
studies (GWASs) [5].

As complex polygenic disorders, SUD risk is attributable
to many genetic variants of small effect size. GWASs
have been limited by the small size of study popula-
tions available for analysis [6], which determine the sta-
tistical power of an association test in GWAS [7]. One
approach to increasing the sample size is to aggregate
samples from multiple GWASs [8, 9]. However, sub-
jects aggregated from different studies often have missing
phenotypic information, such as diagnostic criteria for
a specific SUD because it may not have been a target
of the original study. The lack of phenotyic assessment
is usually handled by removing these subjects from the
aggregated association analysis [8, 9], further reducing
statistical power.

In this paper, we explore the use of a machine learn-
ing approach to infer missing phenotypes for a sub-
ject. The premise of this statistical inference method
is that many different SUDs share common neurobio-
logical processes, including those that mediate reward,
behavioral control, and anxiety or stress responses
[10]. In addition, people with SUDs often use multi-
ple substances so different SUDs often co-occur. For
example, heroin addicts applying for methadone treat-
ment in the United States are regular users of alco-
hol (50%), benzodiazepines (33%), cocaine (47%), and
marijuana (69%) [11].

Phenotype inference is analogous to a recommender
system that predicts the preference (endorsement) of a
user (patient) to a product (symptom) based on known
preferences of other related products (related symptoms).
A recommender system is based on an assumption that
similar users give similar ratings to similar products.
Analogously, similar patients (e.g. those sharing a cer-
tain portion of their genetic background) may endorse
similar symptoms for biologically correlated disorders.
The correlations among symptom endorsements are the
basis for drawing the inferences regarding missing phe-
notypes. Matrix completion methods are widely used to
infer missing ratings in a recommender system by orga-
nizing the ratings of different users (rows) for various
products (columns) into a matrix. By organizing the phe-
notypes of patients related to disorder(s) into a matrix (as
shown in Fig. 1), we can impute the missing phenotypes
by completing the matrix.

Classic matrix completion methods [12, 13] assume
that the matrix to be completed is low rank because
of the rating correlations, and fill in the missing entries
with values that lead to a completed matrix that
yields a minimal rank. These methods do not con-
sider what we call the side information, such as genetic
composition of patients and characteristic of disorders,

which can be very informative to the data completion.
Even though recently side information has been con-
sidered in a few advanced matrix completion methods
[14, 15], many of these methods have non-convex
formulations, resulting in very difficult optimization
problems [16–19].

To address these issues, we have recently developed a
method that completes a matrix by building a bi-linear
predictive model with two side feature matrices, one
describing the row entities of the matrix (e.g. patients)
and the other describing the column entities (e.g. dis-
ease symptoms) [20]. The optimization problem in this
method is convex, and thus is easier to solve comparing
to non-convex formulations. This method has a provable
recovery guarantee that the true matrix can be recovered
as long as there are O(logN) observed entries (where N
is either the number of rows or columns whichever is
greater), when the side information spans the full latent
space of the matrix. When otherwise, a formula is derived
to give the number of observed entries that is neces-
sary to achieve ε-recovery (e.g. recovery error no bigger
than ε). A limitation of this work is that the algorithm
developed for solving the optimization problem lacks scal-
ability to large datasets, whereas large numbers of dimen-
sions are very common in genetic studies. Thus, in this
paper, we propose a new parallel and stochastic algo-
rithm to solve the optimization problem proposed in [20].
This algorithm converges to its global optimum with a
sub-linear rate.

Figure 1 illustrates how we infer the missing phe-
notypes. The matrix F contains the phenotypes to be
completed where rows represent different patients and
columns correspond to phenotypes (e.g., diagnostic cri-
teria for SUDs), respectively; X is a matrix consisting
of genetic data of patients; Y is a matrix composed by
pair-wise similarities between diagnostic criteria. In our
model, F is assumed to be given by XT GY + N and the
missing entries are inferred by learning the two model
parameter matrices G and N. Here, N is used to fit the
random environmental effect on phenotypes. In our eval-
uation, we used an X that contains data for the genetic
variants pre-identified by a GWAS. Our approach was
first validated in a set of simulations, and then used
to analyze an aggregated SUD dataset. We also com-
pared our approach against several other recent matrix
completion methods.

The following notation is used throughout the paper.
A bold lower case letter denotes a vector as v and
‖v‖p reflects the �p-norm of the vector v by ‖v‖p =(|v(1)|p+· · ·+|v(d)|p

)1/p, where v(i) is the i-th entry in v
and d represents the number of elements in v. A bold
upper case letter represents a matrix as Mn×d with the size
of n-by-d. ‖M‖F computes the Frobenius norm of M and
tr(M) computes its trace.



Lu et al. BMC Systems Biology 2018, 12(Suppl 6):104 Page 17 of 128

Fig. 1 Inferring phenotypes for diagnoses of substance use disorders (e.g., opioid and cocaine illustrated here) via matrix completion. Phenotypes
for a set of patients are organized into a matrix F with rows for m patients and columns for n diagnostic symptoms. Related features that describe
patients and symptoms are available, such as, genotypes of individuals in the matrix X and pair-wise similarities between diagnostic symptoms in
the matrix Y. A bi-linear model: F = XT GY + N is used where G and N are model parameters to be learned, and quantify the impact of
genotype-symptom interactions and the residual from any other effect (mainly random environmental effect), respectively

Methods
Materials
• Subjects. A total of 7189 subjects were aggregated
from three family-based or case-control genetic studies
of cocaine use disorder (CUD) and opioid use disor-
der (OUD). Subjects were recruited at five sites: Yale
University School of Medicine (N =3348, 46.57%), the
University of Connecticut Health Center (N = 2407,
33.48%), the University of Pennsylvania Perelman School
of Medicine (N=955, 13.28%), the Medical University of
South Carolina (N = 276, 3.84%), and McLean Hospital
(N = 203, 2.82%). The institutional review board at each
site approved the study protocol and informed consent
forms. The National Institute on Drug Abuse and the
National Institute on Alcohol Abuse and Alcoholism each
provided a Certificate of Confidentiality to protect partic-
ipants. Subjects were paid for their participation. Of the
7189 subjects, 7008 self-reported having used cocaine and
were included in a GWAS of CUD [9]; 4843 self-reported
having used an opioid and were included in a GWAS
of OUD [21]. In total, 4662 subjects self-reported hav-
ing used both cocaine and opioids; of that number, 3441
subjects who in their lives had used opioids and cocaine
more than 11 times were included in the evaluation of the
proposed approach to infer cocaine and opioid use behav-
iors. Statistics describing these datasets can be found in
Table 1.

Our sample included 1645 subjects from 740 small
nuclear families (SNFs) and 5544 unrelated individuals.
The self-reported population distribution of the sample
was 45.51% European-American (EA), 50.65% African-
American (AA), and 3.83% other race. The majority of

participants (59.76%) were never married; 28.22% were
widowed, separated, or divorced; and 12.02% were mar-
ried. Few subjects (0.07%) had only a grade school edu-
cation; 40.41% had some high school, but no diploma;
27.90% completed high school only; and 31.45% received
education beyond high school.

• Assessments. Phenotypic information was assessed
through administration of the Semi-Structured Assess-
ment for Drug Dependence and Alcoholism (SSADDA),
a computer-assisted interview comprised of 26 sections
(including sections for both cocaine and opioid use) that
yielded diagnoses of various SUDs and Axis I psychi-
atric disorders, as well as antisocial personality disorder
[22, 23]. The diagnostic reliability for both DSM-4 [24]
cocaine dependence (CD) and opioid dependence (OD)
were excellent, with test-retest reliability κ = 0.92 for
CD and 0.94 for OD, and inter-rater reliability κ = 0.83
for CD and 0.91 for OD [22]. The reliability of the indi-
vidual criteria ranged from κ = 0.47 − 0.60 for CD and
κ = 0.56 − 0.90 for OD. To assist in the diagnosis of
CUD, OUD or SUD, the DSM-5 lists 11 criteria, which
can be clustered into four groups: impaired control, social

Table 1 Sample size by study and race: African-Americans (AAs)
and European-Americans (EAs)

AAs EAs

CUD association, microarray 2718 2037

CUD association, exome sequencing 940 1395

OUD association, microarray 1398 1756

OUD association, exome sequencing 540 1190

Phenome inference 1149 2292
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impairment, risk use and pharmacological criteria. The
criteria related to CUD and OUD were evaluated using
questions from the SSADDA cocaine and opioid sections,
respectively. In this study, we impute the missing data for
the 11 criteria of CUD and OUD, respectively, for subjects
who had no prior exposure to either cocaine or opioid.
Specifically, we impute CUD criteria from OUD criteria,
or vice-versa, using genotypic data. To evaluate the pro-
posed method against the observed ground truth, in our
experiments we used the 3441 subjects for whom we had
both CUD and OUD criteria.

Subjects were genotyped using one of the following two
methods: the Illumina HumanOmni1-Quad v1.0 microar-
ray (MA) (N = 4281) and Infinium CoreExome-24 Kit
microarray (EMA) (N = 2450) see Table 1 for data
statistics. Detailed descriptions of the genotyping and
variant calling procedures are available [8, 9]. Geno-
types were imputed with IMPUTE2 [25] using the geno-
typed variants and the 1000 Genomes reference panel
(www.internationalgenome.org; released June 2011) (1000
Genomes Project Consortium, 2010). For both genotyping
samples, a total of 47,104,916 variants were imputed. We
used only the variants with an imputation quality score
≥ 0.99.

Analysis
Our analysis was conducted in two steps. We first identi-
fied candidate genetic variants that were nominally asso-
ciated with either CUD or OUD by a GWAS, which were
subsequently used as side features in matrix completion to
infer missing phenotypes.

Candidate genetic variants for CUD and OUD
The genetic relationship (GR) between each pair of sub-
jects was evaluated with LDAK4 [26]. The evaluation
was done separately for the MA and EMA samples, and
included only common variants with minor allele fre-
quency (MAF) ≥ 0.03 and a very high IMPUTE2 quality
score ≥ 0.99. There were 3,140,006 single nucleotide poly-
morphisms (SNPs) for MA and 604,884 SNPs for EMA
included in the GR estimation. The estimated GR matrix
containing the GR values of each pair of subjects was used
in the subsequent association analysis to account for the
population effect from genetic correlations.

To verify and correct the misclassification of self-
reported race, we compared the MA (and EMA) data of
all subjects with the genotypes from the HapMap 3 refer-
ence population: CEU, YRI, and CHB. To characterize the
genetic architecture of the sample, we conducted a prin-
cipal component (PC) analysis in the sample using PLINK
[27] and 489,697 SNPs (and 91,089 SNPs) that overlapped
between the HapMap panel and those included in the GR
evaluation in the MA (and EMA) datasets (after pruning
the SNPs for linkage disequilibrium (LD), defined as r2 >

80%). The first PC scores distinguished AAs and EAs, for
which association analysis was done separately. The first
three PCs were used in the analysis of each population to
correct for residual population stratification.

The CUD (or OUD) criterion count is the number
of the 11 diagnostic criteria endorsed by a subject, and
was used in the GWAS to identify genetic variants. We
used the genome-wide efficient mixed model association
(GEMMA) method [28] to perform association tests with
sex and age as covariates. We combined the results from
all eight studies (with the two different traits [CUD or
OUD], datasets [MA or EMA], and populations [AAs or
EAs]) in a meta analysis using METAL [29]. Genetic vari-
ants with meta P-value < 1×10−5 were used as candidate
variants (i.e., side features) in the phenotype inference
process.

Matrix completion
Matrix completion techniques are commonly used in rec-
ommender systems to ‘complete’ the user-product rating
matrix with only a fraction of available ratings. Classic
matrix completion methods commonly assume that the
true underlying matrix is low rank. Low rank matrix com-
pletion methods [12, 13] solve the following problem:

minE ‖E‖∗, subject to R�(E) = R�(F), (1)
where F ∈ R

m×n is the partially observed low rank matrix
(with a rank of r) that requires recovery, � ⊆ {1, · · · , m}×
{1, · · · , n} be the set of indexes of the observed compo-
nents in F, the mapping R�(M): Rm×n → R

m×n gives
another matrix whose (i, j)-th entry is Mi,j if (i, j) ∈ � but
0 otherwise, and ‖E‖∗ computes the nuclear norm of E.

Several publications [14, 15] propose non-convex
matrix factorization formulations to utilize side informa-
tion. These methods usually have no theoretical guaran-
tees. Alternatively, others propose convex formulations
with provable guarantees on matrix recovery [17–19]. All
these methods construct a bi-linear model XT GY that
satisfies R�

(
XT GY

) = R�(F) where Xd1×m contains d1
features that describe the m row entities and Yd2×n con-
tains d2 features that describe the n column entities of F.
In an early work [17], the side feature matrices X and Y
are assumed to be orthonormal and locate, respectively,
in the latent column and row spaces of F to prove exact
recovery (i.e., recovery of the true matrix) with a reduced
sampling rate in comparison with the matrix completion
without side features. Another method proposed in [18]
achieves an ε-recovery with provable low sampling rate
when the side features are noisy and exact recovery would
not be possible. This method extends the above induc-
tive model by adding a term N (in other words, using
XT GY + N), and the matrix N is assumed to be low rank.
In all these methods, G is required to be low rank to obtain
a low rank E : E = XT GY[ +N] that approximates the

www.internationalgenome.org
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low rank F. Mathematically, however, a low rank E does
not necessarily imply a low rank G so the requirement of
low rank G is unnecessary. Thus, we proposed a method
in [20] that eliminates this requirement, and we use this
method here to complete the diagnostic criterion matrix.
We first briefly review the method in [20], then introduce
a novel parallel and stochastic algorithm for solving the
optimization problem in this method.

Matrix completion with side information
We predict an entry f (e.g., the symptom for the i-th
patient and the j-th diagnostic criterion) in F based on
the side feature (column) vectors x for the i-th patient
and y for the j-th diagnostic criterion. Note that x is a
column in X and y is a column in Y. Specifically, our
model is f = xT Hy + xT u + yT v + γ , where u, v,
γ and H are model parameters. This model uses not
only the linear terms xT u + yT v but also the interaction
term xT Hy. By defining x̄ = [

xT 1
]T , ȳ = [

yT 1
]T and

G(a=d1+1)×(b=d2+1) =
(

H u
vT γ

)
, the above equation can be

simplified to: f = x̄T Gȳ. We solve the following overall
optimization problem for the best G:

min
G,E

1
2

∥
∥
∥XT GY − E

∥
∥
∥

2

F
+ λE‖E‖∗ + λGg(G),

subject to R�(E) = R�(F),
(2)

where E is a completed version of F. The X and Y here
are two matrices that are created by stacking one row of
all ones to the original X and Y, respectively. To simplify
the notation, we use X and Y to represent the two aug-
mented matrices. Because the phenotype data matrix is
expected to be low rank, we also require E to be low rank,
which is commonly translated into a minimization of the
nuclear norm ‖E‖∗. Additionally, g(G) is a function of G
that applies certain priori on G. Because side features can
be noisy and not all of them and their interactions are
helpful in the prediction of F, we expect G to be sparse and
implement g(G) with ‖G‖1. The hyperparameters λE and
λG help to balance the three components in the objective
function of (2) and can be determined by cross validation.

The formulation (2) differs from the existing methods
that make use of side information for matrix completion
in several ways. First, existing methods [16–18] solve the
problem by finding the optimal bi-linear term Ĥ that min-
imizes ‖H‖∗ subject to R�

(
XT HY

) = R�(F); we expand
it to include the linear term within the interactive model.
Second, the proposed model adds the flexibility to con-
sider both linear and quadratically interactive terms, and
allows the algorithm to determine the terms that should
be used in the model by enforcing the sparsity in G. Third,
existing methods all control the rank of G (e.g. by mini-
mizing ‖G‖∗) to incorporate the prior of low rank E (and
thus low rank F) in their formulations, because E = XT GY

and the rank of G bounds that of E from above. However,
when the rank of G is not properly chosen during the
tuning of hyperparameters, it may not be a sufficient con-
dition to ensure low rank E (if rank(E) � the pre-specified
rank(G)). It is easy to see that besides G a low rank X
or Y can lead to a low rank E as well. Requiring a low
rank condition for H or G may limit the search space of
the interactive model and thus impair prediction perfor-
mance on the missing entries, which is demonstrated in
our empirical results. Moreover, when λG is sufficiently
large, Eq. (2) is reduced to a matrix completion problem
without side information because G may be degenerated
into a zero matrix. Thus, our formulation is still applicable
when there is no access to useful side information.

Algorithm
In this section, we derive an algorithm to solve Eq. (2)
based on the so-called Linearized Alternating Direction
Method of Multipliers (LADMM). A stochastic version
of the LADMM (StoLADMM) is developed that solves
a subproblem at each iteration by randomly selecting a
subset of constraints in Eq. (2). Inspired by the stochas-
tic gradient descent algorithm for large scale optimization,
stochastic versions of ADMM have recently been inves-
tigated [30–33]. However, to the best of our knowledge,
ADMM methods with stochastic constraints rather than
stochastic objective functions have not been previously
discussed, which distinguishes our algorithm from other
related works. Besides the major advantage of computa-
tional efficiency and the scalability on constraints, when
carefully designed, our algorithm has a convergence rate
of O

(
1/

√
k
)

in expectation.
We first show that the LADMM is applicable to our

problem and then derive StoLADMM steps.
To use LADMM, the variables to be determined in the

optimization problem should be grouped into separate
blocks. We use change of variables to meet this condition.
We first define C = E−XT GY and plug it into Eq. (2). Fol-
lowing the LADMM scheme, the augmented Lagrangian
function of (2) can be written as

L(E, G, C, M1, M2, β) =1
2
‖C‖2

F + λE‖E‖∗

+ λG‖G‖1 + β

2
‖R�(E − F)‖2

F

+ 〈M1, R�(E − F)〉
+

〈
M2, E − XT GY − C

〉

+ β

2

∥
∥
∥E − XT GY − C

∥
∥
∥

2

F

where M1, M2 ∈ R
m×n are called Lagrange multipli-

ers and β > 0 is the penalty parameter. As an iterative
algorithm, given Ck , Gk , Ek , Mk

1 and Mk
2 at iteration k, we

update each group of the variables as follows:
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Ck+1 = arg min
C

L
(

Ek , Gk , Mk
2, C

)
,

Gk+1 = arg min
G

L
(

Ek , G, Mk
2, Ck+1

)
,

Ek+1 = arg min
E

L
(

E, Gk+1, Mk
1, Mk

2, Ck+1
)

.

After solving these subproblems, we update the multi-
pliers M1 and M2 as follows;

Mk+1
1 =Mk

1 + β
(

R�

(
Ek+1 − F

))
,

Mk+1
2 =Mk

2 + β
(

Ek+1 − XT Gk+1Y − Ck+1
)

.

Next, we derive the solution to each of the above three
subproblems. The four steps are noted as Updating C,
Updating G, and Updating E.

Updating C: we solve the following problem

min
C

1
2
‖C‖2

F +
〈
Mk

2, Ek − XT GkY − C
〉

+ β

2

∥
∥
∥Ek − XT GkY − C

∥
∥
∥

2

F

which has a closed form solution as:

Ck+1 = β

β + 1

(
Ek − XT GkY + Mk

2/β
)

Updating G: we need to solve

min
G

λG‖G‖1 +
〈
M2, Ek − XT GY − Ck

〉

+ β

2

∥
∥
∥Ek − XT GY − Ck

∥
∥
∥

2

F
.

(3)

After adding a constant term to Eq. (3), we obtain

min
G

λG‖G‖1 + β

2

∥
∥
∥Bk − XT GY

∥
∥
∥

2

F

where Bk = Ek + Mk
2/β − Ck . By converting the matrix

G into a vector g = vec(G), vec
(
XT GY

) = (
YT ⊗ XT)

g
where ⊗ computes the Kronecker product of two matri-
ces. Further, we let bk = vec

(
Bk

)
. Now, if we denote

A = (
YT ⊗ XT)

, the above problem becomes:

min
g

λG‖g‖1 + β

2

∥
∥
∥Ag − bk

∥
∥
∥

2

2
(4)

Equation (4) is a standard least-absolute-shrinkage-
and-selection-operator (LASSO) problem, and has to
be solved iteratively in practice. It causes a prob-
lem to compute or even store A because the size of
A is nm × d1d2, which is often prohibitively large.
Using the stochasticity and linearization techniques
in ADMM, we approximate our problem as follows:

1
2

∥
∥
∥Akg − b̃k

∥
∥
∥

2

2

≈1
2

∥
∥
∥Akgk − b̃k

∥
∥
∥

2

2
+

〈
f k
1 , g − gk

〉
+ τk

2

∥
∥
∥g − gk

∥
∥
∥

2

2

(5)

where Ak and b̃k contain the data from the correspond-
ing s rows of A and b and the indexes of the s rows are
randomly drawn from {1, · · · , nm}, τk > 0 is a proximal
parameter, and

f k
1 = AkT (

Akgk − b̃k
)

(6)

is the stochastic gradient of 1
2

∥
∥
∥Akg − bk

∥
∥
∥

2

2
at gk . The

stochastic approximation can tremendously reduce mem-
ory consumption and save computational costs in each
iteration. Then Eq. (4) can be approximately re-written as
follows by plugging Eq. (5) in Eq. (4):

min
g

λG‖g‖1 + βτk
2

∥
∥
∥g −

[
gk − f k

1 /τk
]∥∥
∥

2

2

Obviously the closed-form solution is:

gk+1 = max
(

|gk − f k
1 /τk| − λG

τkβ
, 0

)
� sgn

(
gk − f k

1 /τk
)

where � computes the component-wise vector multipli-
cation. Our algorithm calculates each stochastic gradi-
ent in parallel by using multiple computation units, i.e.,
workers, then averaging those gradient values by a cen-
tral computation unit, i.e., a master. Hence, when solving
the subproblem (4) for G, we run a parallel stochastic
process. Because the term ||Ag − b||22 is derived from
the constraints in the original problem (2), the proposed
algorithm actually solves an optimization problem with
stochastic constraints.

Updating E: we solve the following problem

min
E

λE‖E‖∗ +
〈
Mk

1, R�(E − F)
〉
+ β

2
‖R�(E − F)‖2

F

+
〈
Mk

2, E − XT Gk+1Y − Ck
〉

+ β

2

∥∥∥E − XT Gk+1Y − Ck
∥∥∥

2

F
,

and we can re-organize this subproblem into a simpler
form as:

min
E

λE‖E‖∗ + β

2
‖R�

(
E − Bk

2

)
‖2

F + β

2
‖E − Bk

3‖2
F

where Bk
2 = R�

(
F − Mk

1/β
)

and Bk
3 = XT Gk+1Y +

Ck − Mk
2/β . By the same linearization technique used in

Updating G, the problem can be approximated by:

min
E

λE‖E‖∗ + βτ ′
k

2

∥
∥
∥E −

(
Ek − f k

2 /τ ′
k

)∥
∥
∥

2

F

+βτ ′
k

2

∥
∥
∥E −

(
Ek − f k

3 /τ ′
k

)∥
∥
∥

2

F
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where f k
2 and f k

3 are the gradients of 1
2

∥
∥
∥R�

(
E − Bk

2

)∥
∥
∥

2

F

and 1
2

∥
∥
∥E − Bk

3

∥
∥
∥

2

F
at Ek , respectively, which can be com-

puted as follows:

f k
2 = R�

(
Ek − Bk

2

)
= R�

(
Ek − F + Mk

1/β
)

,

f k
3 = Ek − Bk

3 = Ek − XT Gk+1Y − Ck + Mk
2/β .

(7)

Therefore, the closed-form solution can be obtained as

Ek+1 = SVT
(

Ek −
(

f k
2 + f k

3

)
/
(
2τ ′

k
)

, λE/2
(
βτ ′

k
))

Here the operator SVT(E, t) is defined in [12] for thresh-
olding the singular values of a matrix E by t (i.e., only
keeping the singular values of E greater than or equal to t
and setting others to 0).

Algorithm 1 summarizes the StoLADMM steps for opti-
mizing the variables (C, E, G, M1, M2).

Algorithm 1 The StoLADMM algorithm to solve Ck , Gk ,
Ek , k = 1, ..., K
Input: X, Y and R�(F) with parameters λG, λE , τk , τ ′

k , s,
ρ and βmax.

Output: C,G,E;
1: Initialize E0, G0, M0

1, M0
2. Compute A = YT ⊗XT . k =

0,
repeat;

2: Update C: Ck+1 = β
β+1

(
Ek − XT GkY + Mk

2/β
)

;

3: Update G: Gk+1 = reshape
(

max
(
|gk − f k

1 /τk|−
λG
τkβ

, 0
)
�sgn

(
gk −f k

1 /τk
))

where f k
1 can be computed

by (6);
4: Update E: Ek+1 = SVT

(
Ek −

(
f k
2 + f k

3

)
/

(
2τ ′

k
)

, λE/2
(
βτ ′

k
))

where f k
2 and f k

3 can be computed
by (7);

5: Update M1: Mk+1
1 = Mk

1 + β
(

R�

(
Ek+1 − F

))
.

6: Update M2: Mk+1
2 =Mk

2+β
(

Ek+1− XTGk+1Y − Ck+1
)

.

7: k = k + 1 until convergence;
Return C,G,E;

It can be proven that the proposed algorithm, which
belongs to the family of stochastic ADMM methods,
has an O(1/

√
k) convergence rate [32], while achieving

both storage and computational efficiency. When run-
ning Algorithm 1, we set the sampling block size s to be
max (1,

√
length(g)/100), and τk < ‖A‖, τ ′

k < ‖R�(F)‖
and β = 0.01 as the preferable values listed in [20, 34].
In the initialization step, M0

1 and M0
2 are randomly drawn

from the standard Gaussian distribution; we initialize
E0 and G0 by the iterative soft-thresholding algorithm

[35] and SVT operator respectively. In addition to the
convergence property and computational efficiency, our
algorithm improves its usability by application of the
linearization technique because two of the subproblems
are non-smooth with the �1-norm or the nuclear norm,
and are difficult to solve without the linearization and
thresholding.

Despite the recent intensive studies on stochastic opti-
mization algorithms such as the stochastic gradient
descent [36, 37] and stochastic ADMM [32, 33], much
less work has addressed optimization problems with a
large number of constraints. The most related work is
the method in [38, 39] where a primal-dual stochas-
tic algorithm was proposed for constrained optimization
and attained an optimal convergence rate of O(1/

√
k) for

Lipschitz continuous objectives; an online optimization
algorithm was used in [39] where the objective func-
tion consisted of a Lyapunov drift term and an online
penalty term. However, none of these methods investi-
gated ADMM methods for stochastic constraints.

Results
To test the effectiveness and scalability of the pro-
posed algorithm, we first experimented with completing
synthetic matrices of various sizes, and compared the
method against other state-of-the-art matrix completion
approaches. Then, we used the method to analyze our
Opioid-Cocaine SUD Dataset. This dataset was created
by aligning the 11 diagnostic criteria for CUD and the 11
criteria for OUD for all 3,441 patients to form F. The com-
peting methods that also used side information included:
LADMM [40], MAXIDE [17], IMC [16] and DirtyIMC
[18]. The performance of all methods was measured by
the relative mean squared error (RMSE) calculated on the
missing entries: ‖R ��

(
XT GY − F

) ‖2
2/‖R��(F)‖2

2.
The rank of G was a hyperparameter required by IMC

and DirtyIMC and the regularization hyperparameters λ’s
were used by all methods. We first left out a portion (q%)
of data in F for the final testing. We ran cross-validation
within the remaining data to determine λ’s: we randomly
drew 30% of the given entries of F as a validation set. Then
each model was constructed using the remaining entries
with different λ choices from 10−3, 10−2, ..., 104. For IMC
and DirtyIMC, the best rank of G was chosen from 1 to
15 within each 30–70% data split. Experiments with each
hyperparameter setting were repeated three times and the
average RMSE was calculated. The hyperparameter values
that gave the best average validation RMSE were chosen
for each individual method.

In our experiments, we repeated the entire procedure
5 times and reported the average RMSE on the miss-
ing q% entries (i.e., the test RMSE). The procedure for
removing the q% of entries in F is described separately
in the simulations and in our case study. All tests were



Lu et al. BMC Systems Biology 2018, 12(Suppl 6):104 Page 22 of 128

conducted using Matlab and experiments were performed
on an Intel Core i7 3.6GHz computer with 16GB RAM.

Simulations
We created synthetic matrices of 200 × 200 and 1000 ×
1000. Note that the 1000 × 1000 matrix corresponded to
a large dataset of 106 entries. To mimic real-world com-
plexity, we synthesized data for each feature in both X and
Y according to a distribution that was randomly selected
from Gaussian, Poisson and Gamma distributions. To
generate G, the location of the non-zero entries of G were
randomly selected and their values were drawn from a
Gaussian distribution N (0, 100) independently and iden-
tically, which we repeated several times to choose the
matrices that were full- or high-rank. We then generated
F by computing F = XT GY + N where N represented
noise and each component in N was drawn from N (0, 1).
We used N (0, 1) to create noise so the larger signals in
G drawn from N (0, 100) had enough chance to be recog-
nized. Then q percent of the entries in F were randomly
drawn and set to be missing. For each simulated F matrix,
we ran all methods with multiple choices of missing data
amount, and we used q∈[10%−90%] and a step size of 10%.

We compared the different methods in the three syn-
thetic experiments I, II and III. In the first setting, the
dimension of X and Y was set to 15 × 200 and 20 × 200
and all features in these two matrices were randomly gen-
erated (in the same procedure as the generation of G) to
make them full row rank. In the other two settings, X and
Y were not full row rank. The dimension of X and Y was
set to 16×200 and 21×200 in the setting II, and 20×1000
and 25 × 1000 in the setting III, respectively. For these
two settings, the first 15 features in X and 20 features in
Y were randomly created, but the remaining features were

generated by computing linear combinations of the ran-
dom created features. We generated 10 synthetic datasets
for each setting using the same procedure as described
above and reported the mean and standard deviation of
test RMSE values, which are shown in Fig. 2.

Based on Fig. 2, our approach achieved greater accuracy
than the other methods in all the different settings. As
the missing percentage q grew, the RMSE of our method
increased to a lesser degree than that of other methods.
We reviewed the ranks of the recovered G and E in the
first setting. For each method, the G and E matrices that
achieved the best performance were examined. The ranks
of G and E from our method, MAXIDE, IMC, Dirty-
IMC were 15, 8, 1, 1 and 15, 7, 1, 1, respectively. Thus,
our method appeared to recover the interactive matrix
G more accurately than the other methods, probably
because the fact that other methods used an unnecessarily
strong prior of low rank G. We calculated and showed the
recovered model matrices G for all of the methods at the
missing percentage of q = 50% and compared them with
the true G in Fig. 3. As can be seen there, our method was
the only one that could recover the true G.

To empirically validate the scalability of our method,
Table 2 lists the run time in seconds and accuracies of
all the competing methods including the non-stochastic
LADMM algorithm on synthetic matrices with the size
of 1000 × 1000 in another Synthetic Experiment IV. The
result showed that accelerating the method did not sac-
rifice the final recovery accuracy noticeably. Although
the proposed algorithm used only 5% of the time taken
by the non-stochastic LADMM, meaning 20 times faster
than the standard LADMM algorithm, the imputation
accuracy as measured by RMSE was better than the
other methods. These observations demonstrate that our

Fig. 2 The Comparison of the average RMSE values and standard deviations as bars in Synthetic Experiments I, II, and III
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Fig. 3 The heatmap of the true G and recovered G matrices in Synthetic Experiment I

stochastic method can be a better alternative to handle big
datasets.

Inference of CUD and OUD diagnostic criteria
We used the proposed approach to analyze the data of
3441 SUD subjects for whom both CUD and OUD diag-
nostic criteria were recorded, which means that we had
a fully observed matrix F. To mimic the real-life situa-
tion where the use of a substance might not be reported,
thus missing all criteria for that substance, we randomly
selected q percent of SUD patients, for whom we removed
randomly either CUD or OUD diagnostic criteria. We
evaluated the performance with 5 different q values: 20%,
40%, 60%, 80%, and 100%. Note that when q = 100%,
every patient had either CUD or OUD diagnostic crite-
ria removed but not both. There were 383 genetic variants

Table 2 The Comparison of RMSE values and computation time
of different methods in Synthetic Experiment IV

q StoLADMM LADMM DirtyIMC IMC MAXIDE

10% RMSE 0.061 0.062 0.419 0.402 -

time(s) 1.773 20.727 0.827 4.750 -

20% RMSE 0.095 0.098 0.453 0.468 -

time(s) 1.475 26.781 0.757 4.297 -

30% RMSE 0.085 0.076 0.499 0.402 -

time(s) 1.447 18.807 0.406 4.750 -

40% RMSE 0.089 0.069 0.593 0.620 -

time(s) 1.452 18.976 0.420 4.796 -

50% RMSE 0.081 0.076 0.716 0.700 -

time(s) 1.382 22.057 0.248 3.156 -

Computation time is measured by seconds, and ‘-’ represents running failure, i.e.,
the method fails due to the out-of-memory issue

selected in our GWAS, which were used as side informa-
tion in X. We computed the correlations between each
pair of the 22 criteria using all patients and used the
correlation matrix as Y.

In addition to the four competing methods used in the
simulations, we also compared our method to a naive
method (NM) in which the missing criteria of a disorder
were filled by copying over the patient’s diagnostic symp-
toms for the other substance. The proposed algorithm was
evaluated using the same training and tuning procedure
as used in the simulations. The imputation accuracy and
computation time of all methods are shown in Table 3.
Because there was no imputation in the NM method, run
time was not given in the table. The best performance was
again obtained by our approach in terms of both accuracy
and time efficiency in comparison with other imputation
methods.

Figure 4 shows the parameter matrix G (of size 383×22)
obtained by our algorithm. Note that the genetic variants

Table 3 The comparison of imputation results by different
methods on the Opioid-Cocaine SUD dataset

q StoLADMM LADMM DirtyIMC IMC MAXIDE NM

20% RMSE 0.236 0.231 0.297 0.230 0.235 0.567

time(s) 30.938 664.515 45.366 21.053 4732.718 -

40% RMSE 0.226 0.234 0.298 0.235 0.236 0.582

time(s) 29.953 982.212 21.063 20.803 3772.202 -

60% RMSE 0.228 0.236 0.301 0.237 0.235 0.581

time(s) 28.719 815.841 20.269 36.737 4718.916 -

80% RMSE 0.236 0.237 0.303 0.239 0.241 0.585

time(s) 30.547 877.886 23.906 32.872 4011.692 -

100% RMSE 0.223 0.239 0.303 0.246 0.242 0.574

time(s) 30.172 489.770 22.922 24.653 3695.292 -
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Fig. 4 The recovered G by our method for the Cocaine-Opioid SUD dataset. Columns C1-C11 represent 11 CUD diagnostic criteria, columns O1-O11
represent 11 OUD diagnostic criteria. C1/O1: Larger or longer Cocaine/Opioid use than intended; C2/O2: Failed efforts to stop on Cocaine/Opioid;
C3/O3: Much time spent in Cocaine/Opioid related activities; C4/O4: Strong desire to use Cocaine/Opioid; C5/O5: Cocaine/Opioid effect interfered
with life; C6/O6: Cocaine/Opioid use despite of its interference; C7/O7: Major activities reduced by Cocaine/Opioid use; C8/O8: Physical hazard
caused by Cocaine/Opioid use; C9/O9: Cocaine/Opioid use knowing it threatening health; C10/O10: Cocaine/Opioid tolerance; C11/O11:
Cocaine/Opioid withdrawal syndrome

were ordered in ascending fashion with respect to their
association p-values reported in the GWAS, so the most
significant variants identified in the GWAS are at the top
of the figure. A more saturated color reflects a stronger
interaction between a specific genetic variant and a diag-
nostic criterion. Red denotes positive interactions and
blue denotes negative interactions. We further expanded
first 30 rows of Fig. 4 into Fig. 5. It can be observed from
Figs. 4 and 5 that the first 30 most significant variants
from the GWAS had the largest magnitude interactions
with the criteria. Another observation on Fig. 4 is that
genetic variants with lower (stronger) association p-values
are more likely to show stronger interactions with the
phenotypes.

Discussion
In this section, we discuss other benefits besides the accu-
racy and efficiency of the proposed approach. In Fig. 5,
9 of the variants and their interactions with diagnostic
criteria received high weights when imputing the unre-
ported criteria. It is also interesting to observe that the
interactions between all these variants and the opioid
diagnostic criterion “opioid use despite its interference”

were negatively proportional to the imputed values of
missing criteria for CUD, which may need further inves-
tigation in a future study. The SNP rs1481605 at base
pair (bp) 13,519,829 on chromosome 8 received the high-
est weights for its interactions with all 22 phenotypes
in the model. Moreover, this SNP was associated with
both OUD and CUD at genome-wide significant level
(p < 5 × 10−8) in the GWAS. This SNP is located at
the downstream (94,032 bp away) of gene C8orf48, which,
according to data from GTEx (available at https://www.
gtexportal.org/home/), expresses in many brain tissues,
and its expression in nucleus accumbens is the highest, as
illustrated in Fig. 6 copied from the GTEx website.

Conclusion
In conclusion, we have proposed a new approach based
on a matrix completion technique that uses genotype data
to infer diagnostic criteria of a disorder, specifically, diag-
nostic criteria of substance use disorders. Our approach
can integrate side information at different scales extend-
ing from the DNA scale to the behavioral scale (derived
from other comorbid disorders). By imposing a sparse
prior on the model parameter matrix G, the method can

https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
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Fig. 5 The top 30 rows of the recovered G by our method for the Cocaine-Opioid SUD dataset. Columns correspond to the diagnostic criteria for
CUD and OUD whereas rows correspond to the candidate genetic variants. The right-hand side gives the locations of these genetic variants and
their p-values obtained in the GWAS

help to identify important interactions that link specific
genotypes to diagnostic criteria. An efficient stochas-
tic LADMM algorithm has been developed to solve the
related optimization problem 5% of the time required
by the non-stochastic algorithm. Experimental evalua-
tion of the proposed approach shows that it outperforms
the state-of-the-art for phenotype inference by improv-
ing both accuracy and computational efficiency. These

results also demonstrate that effectively integrating geno-
type data with other relevant sources of information is a
better alternative for imputing missing phenotypes than
using a single source. As an additional benefit, the pro-
posed method constructs a bi-linear predictive model
that can be used to predict symptoms of new subjects
more effectively than classical low rank matrix completion
methods, which do not produce a model.

Fig. 6 Gene expression distribution (RPKM, Reads per Kilobase Million) of C8orf48 across human tissues
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