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Abstract—Recent studies have demonstrated that geographic
location features collected using smartphones can be a powerful
predictor for depression. While location information can be conve-
niently gathered by GPS, typical datasets suffer from significant
periods of missing data due to various factors (e.g., phone power
dynamics, limitations of GPS). A common approach is to remove
the time periods with significant missing data before data analysis.
In this paper, we develop an approach that fuses location data
collected from two sources: GPS and WiFi association records,
on smartphones, and evaluate its performance using a dataset col-
lected from 79 college students. Our evaluation demonstrates that
our data fusion approach leads to significantly more complete
data. In addition, the features extracted from the more complete
data present stronger correlation with self-report depression
scores, and lead to depression prediction with much higher F1
scores (up to 0.76 compared to 0.5 before data fusion). We further
investigate the scenerio when including an additional data source,
i.e., the data collected from a WiFi network infrastructure. Our
results show that, while this additional data source leads to even
more complete data, the resultant F1 scores are similar to those
when only using the location data (i.e., GPS and WiFi association
records) from the phones.

Index Terms—depression prediction, machine learning, smart-
phone sensing

I. INTRODUCTION

Depression is one of the most widespread mental health
problems. People with depression suffer from higher medical
costs, exacerbated medical conditions, increased mortality, and
decreased productivity [36], [19], [10]. Diagnosis of depression
typically requires the persistent and direct attention of a skilled
clinician. However, most countries suffer from a marked lack
of trained mental health professionals [1].

The ubiquitous adoption of smartphones creates new oppor-
tunities for depression screening. Several recent studies have
explored the possibility of depression screening via sensor
data collected from smartphones (e.g., [15], [32], [6], [34]).
These studies have found that location data can yield important
features that can be used by machine learning models for
depression prediction. Location data can be directly collected
using GPS, a sensor built into most commercial smartphones.
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The energy consumption of GPS is, however, high. Therefore
GPS is only used to gather location information at coarse time
granularity (a few or tens of minutes). Furthermore, the energy
management system on a phone often turns off GPS when the
battery level is low. In addition, it is well known that GPS
does not perform well in certain common environments (e.g.,
indoors), where it either fails to collect data or collects data
with large errors. As a result, these studies must contend with
significant time periods with missing or noisy data [34], [32].
The data collected from our recent study [15] confirms this
observation (see Section III).

One approach to manage such missing data is to simply
remove the time periods with poor quality, as in our previous
study [15]. In this paper, we explore another source of
location data—WiFi association records—which indicate when
a smartphone is associated with a wireless access point (AP).
This information can be conveniently collected on a phone. It
can serve as an alternate source of location information since
a phone must be close to an AP for association, and hence the
location of the AP can be used to approximate the location
of the phone. These two sources of location information, GPS
locations and WiFi association records, are complementary to
each other. Specifically, GPS does not work well in indoor
environments, while WiFi coverage is better inside buildings;
and collecting WiFi association records is much less energy
consuming than using GPS.

In this paper, we explore fusing location data from these
two sources to obtain more complete location information,
and investigate its impact on depression screening. Our results
are obtained from a dataset collected from 79 participants, all
being students at the University of Connecticut (UConn). We
make the following contributions.
• We develop an approach that fuses two sources of location

data, GPS and WiFi association records, collected from
smartphones. This approach leverages the complementary
strengths of these two data sources. Our evaluation results
show that this data fusion approach leads to more complete
location data. For instance, for data collected on Android
phones, after data fusion, 54% of the time (compared to
30% before data fusion), the coverage (i.e., the fraction of
the time with location data observations) is above 80%;
for iPhones, 29% of the time (compared to 10% before
data fusion), the coverage is above 70%;

• We investigate the impact of the more complete data on
depression prediction. Our results demonstrate significant
benefits from data fusion. Specifically, after the data fusion,
the location features present stronger correlations with
PHQ-9 scores [21] (PHQ-9 is a quantitative tool for aiding
depression screening and diagnosis), and the classification
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results show significantly higher F1 scores (up to 0.76
compared to 0.5 before data fusion).

• We further investigate a scenario where we include the
data from the university WiFi network infrastructure (all
participants were UConn students and spent a substantial
amount of time on campus) to complement the two sources
of location data collected on the phones. Our results show
that, although the location data is indeed more complete
after including this additional data source, the performance
gain in predicting depression is very little. Therefore, our
results indicate that just fusing the two sources of location
data from the phones, which can be achieved easily in
practice, can obtain most of the performance gains.

The rest of the paper is organized as follows. Section II
describes the dataset. Section III presents the motivation for this
study. Sections IV and V present the data fusion approach for
two scenarios, one using only data from phones and the other
adding WiFi records from the WiFi network infrastructure.
Section VI presents the impact of data fusion on feature
extraction. Sections VII and VIII presents the correlation and
classification results, respectively. Section IX briefly reviews
related work. Finally, Section X concludes the paper, and
presents the limitations of this study and future work.

II. DATA COLLECTION

The data was collected from October 2015 to May 2016 from
79 participants. All participants were students at the University
of Connecticut (UConn). Three types of data were collected:
smartphone sensing data, PHQ-9 questionnaire responses, and
clinician assessment. To preserve privacy of the participants,
we anonymized the participants by assigning each of them a
random user ID. The data are annotated with the random IDs.

A subset of data has been used in our earlier study [15],
which investigated the feasibility of using smartphone sensing
data (specifically, location and activity data) for depression
screening. In this paper, we explore how to augment GPS
location data using WiFi association records that were collected
at the phones. In the following, we first describe the various
types of data in detail and then briefly describe the participants
information.

A. Smartphone Sensing Data

We developed an app, called LifeRhythm, that runs in the
background on a participant’s phone to collect a variety of
sensing data. Specifically, we developed the app for two
predominant smartphone platforms, Android and iPhones. For
Android, the app was developed based on an existing publicly
available library, Emotion Sense library [23]; for iPhone, the
app was developed using Swift from the scratch (see more
details in [15]). Three types of sensing data—location, activity
data, and WiFi association records—are used in this paper.

1) GPS Location: On Android phones, GPS location is
collected periodically every 10 minutes. This is achieved
by registering the sensing service to the alarm service, one
of the system services on Android, which wakes up the
sensing service every 10 minutes. On iPhones, there is no
convenient mechanism for collecting GPS data periodically.

So we designed an event-based method for collecting location
data. To balance battery usage and location update frequency,
we use two parameters, desired accuracy and distance filter,
to jointly determine when a location update event occurs. The
values of these two parameters depend on a user’s activity; see
more details in [15].

For both Android phones and iPhones, each location sample
contains the following information: longitude, latitude, user
ID, and error (in meters). We filter out the samples that have
errors larger than 165 meters to retain most of the samples
while eliminating the samples with large errors [15].

2) Activity: Activity is sensed periodically every 10 minutes
on Android using the Google’s Activity Recognition API.
For iPhones, depending on the phone model, user activity
is collected in one of the following two ways. For phone
models 5s and above, we use Apple’s core motion API to
collect activity information using the phone’s motion co-
processors. This is a background service, managed by iOS,
which continuously collects activity information from the phone.
On each location update event, our app will query and store
the activity information from core motion API for the interval
(from the last update time to the current time). For iPhone 5c
and below, since built-in motion co-processors are not available,
the app estimates user activity using the instantaneous speed
at the time of a location update; see more details in [15].

The sensed activity at a particular point of time can be
stationary, walking, running, cycling, in-vehicle, or unknown,
associated with a confidence value. We removed all the activity
samples that have low confidence (i.e., the confidence is below
50%). After that, we classify the activity into four types:
fast-moving (include running, cycling, in-vehicle), walking,
stationary and unknown. In Section IV, we use fast-moving
activities to identify significant location changes.

3) WiFi Association Logs: On Android phones, our app
logs the MAC address of an AP when a phone is associated
with the AP for Internet access. Similarly, it also logs the
disassociation events (i.e., when a phone disassociates with
an AP). For iPhones, the association and disassociation events
were logged in a similar manner using a third-party library. In
addition, when a location update event occurs, the app also
explicitly logs the current AP that the phone is associated with
(if any).

B. PHQ-9 Scores

Patient Health Questionnaire (PHQ-9) [21] is a nine-item
questionnaire that can be used for self-reports or by clinicians
for diagnosing and monitoring depression. Each of the nine
questions evaluates behavior or mental state with established
relevance to major depressive disorders. Participants in our
study first responded to PHQ-9 questionnaire during the initial
assessment, and then continued to respond on their phones every
14 days through another smartphone app that we developed.

C. Clinical Assessment

Every participant was assessed by a clinician at the beginning
of the study. Specifically, using an interview that was designed
based on the Diagnostic and Statistical Manual of Mental
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Fig. 1: Extent of missing location data from Android phones:
(a) Time coverage of the GPS location data for all PHQ-9
intervals. (b) Location samples for one PHQ-9 interval.
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Fig. 2: Extent of missing location data from iPhones: (a) Time
coverage of the GPS location data. (b) Location samples for
one PHQ-9 interval.

Health (DSM-5) and PHQ-9 evaluation, the clinician classified
individuals as either depressed or non-depressed during the
initial screening. A participant with a diagnosis of depression
must participate in treatment to remain in the study. In addition,
depressed participants had follow-up meetings with the clinician
periodically (once or twice a month determined by the clinician)
to confirm their self-reported PHQ-9 scores with their verbal
report during the meetings. A participant that was determined
as non-depressed during the initial screening may report a high
PHQ-9 score (above 10) or suicidal intent later on. In that case,
the clinician re-assessed the participant, and suggested him/her
to participate in treatment if needed.

D. Participants

We recruited 25 Android users and 54 iPhone users, all
students of UConn, aged 18-25. Among the 25 Android
users, 6 were classified as depressed and 19 were classified
as non-depressed. The Android phones were from a variety
of manufacturers, including Samsung, Nexus, HTC, Xiaomi,
Motorola and Huawei. Among the 54 iPhone users, 13 were
classified as depressed and 41 were classified as non-depressed.
All participants used their own smartphones except for two
participants (who did not have smartphones and borrowed
Android phones from us).

III. MOTIVATION OF THE STUDY

In this section, we quantify the extent of missing location
data (specifically GPS data) to motivate this study. When
analyzing the data, we define PHQ-9 interval. It is a 15-day
time period, including the day when a participant fills in a
PHQ-9 questionnaire and the previous 14 days [15]. We use this
notion since the PHQ-9 questionnaire asks participants to reflect
their behavior in the past 14 days, and we are interested in
understanding whether the behavior data from the smartphones
can be used to predict the PHQ-9 scores.

In the following, we first present the extent of missing data
for both Android and iPhone platforms. We then explore using
existing data imputation methods for handling the missing data.
In the end, we summarize the main results.

A. Extent Of Missing Data

For Android phones, the collected GPS data contains 229
PHQ-9 intervals. If we assume no missing data, then each
PHQ-9 interval contains 15×24×6 = 2160 location samples
(since GPS location is collected periodically every 10 minutes).
We define time coverage to be the fraction of the samples
that is actually collected during a PHQ-9 interval. Fig. 1(a)
plots the cumulative distribution function (CDF) of the time
coverage for all 229 PHQ-9 intervals. We observe that for 50%
of the PHQ-9 intervals, the time coverage is less than 69%, and
only 30% of the time coverage is more than 80%, indicating
a significant amount of missing data. The missing data can
happen during day or night, which can be due to scheduling
of the operating system, failure of data capture by GPS, or
mis-configuration by a participant. Fig. 1(b) plots the location
samples for one participant during a PHQ-9 interval, where a
vertical bar represents the time when a sample is captured. We
also observe that, while the GPS is scheduled to wake up every
10 minutes, the interval between two consecutive GPS samples
varies between 5 to 15 minutes, with the actual wake-up time
determined by the operating system.

For iPhones, the collected GPS data contains 344 PHQ-
9 intervals. Since the data collection is based on events of
significant location changes, not periodically, we cannot use the
methodology that is used for Android to quantify the amount of
missing data. Instead, we use the following heuristic. Suppose
`1 and `2 are consecutive GPS location samples, taken at times
t1 and t2, respectively. If t2− t1 > T , then we assume that the
location is `1 from t1 to t1 +T , and the location data from
t1 +T to t2 is missing. We set T to be time dependent: during
6am-10pm, it is 4 hours for weekdays and is relaxed to 6
hours for weekends; other than 6am-10pm, it is set to 8 hours.
This heuristic is based on the approximate schedules of college
students (all our participants are college students). The time
coverage for a PHQ-9 interval is the amount of time with
location information over the total amount of time. Fig. 2(a)
plots the time coverage for iPhone data when using the above
heuristic. We observe that for 50% of PHQ-9 intervals, the time
coverage is less than 56%, and only 10% of the time coverage
is more than 70%. Fig. 2(b) plots the location samples for one
iPhone user during one PHQ-9 interval. It shows that sometimes
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Fig. 3: The distance of the imputed coordinates and the ground-
truth coordinates: (a) randomly removing entries in the original
data, (b) removing data following the pattern of missing data
in other instances.

there is no samples during several hours (and sometimes no
sample during a day).

B. Missing-data Imputation

We next explore using existing imputation methods to deal
with the missing data. Specifically, we consider the GPS
locations in one PHQ-9 interval as a matrix, where a row
in the matrix represents the samples in a day. Since each
location coordination consists two values, longitude and latitude
information, we represent the location data in a PHQ-9 interval
as two matrices, one for longitude, and the other for latitude
information. Consider a matrix. Suppose we observe m entries
and the rest of the entries are missing. Matrix completion
approaches recover the entries that have not been observed.
We explore three matrix imputation approaches: Matrix Factor-
ization (MF) [37], Multiple Imputation by Chained Equations
(MICE) [16], and Nuclear Norm Minimization (NNM) [5].
Our evaluation below considers the Android dataset, where
the location sampling is periodic, and hence it is more
straightforward to apply the above data imputation methods.
The imputation for the longitude and latitude data (in two
separate matrices) were performed independently.

To evaluate the performance of the above three data imputa-
tions, we compare the imputed values with the ground-truth
values. Specifically, for an original matrix M that has m entries,
we remove some entries so that the resultant matrix, M′, has
m′ entries, m′ < m. After that, we apply the above imputation
methods to M′ to complete the matrix. The accuracy is obtained
by evaluating the imputed results for the observed entries that
are in M, but not in M′, i.e., the entries that were removed
from M to obtain M′. For a PHQ-9 interval, we apply the
above procedure to both the longitude and latitude matrices.
Specifically, let Mg and Mt be the original longitude and latitude
matrices, respectively; after removing a set of entries in the
same way from these two matrices, let M′g and M′t represent
the resultant matrices. Then consider the removed coordinates
(longitude and latitude) in Mg and Mt . Let C′ denote the set
of imputed coordinates, and C denote the set of corresponding
original coordinates (which serves as the ground truth). We
evaluate the accuracy of a imputation method by calculating the
distances between the imputed coordinates and the ground-truth

coordinates, which provides a more meaningful quantification
of error in our setting compared to evaluating the errors in
longitude and latitude separately.

In the following, we consider two PHQ-9 intervals in the
dataset that have the highest time coverage (as 92.1% and
93.9%), and hence the lowest amount of missing data. Using
the evaluation procedure as described above, we investigate
two ways of removing entries from the original matrices. The
first method is simply removing entries uniformly at random;
the second is by following the pattern of missing data in other
PHQ-9 intervals. Specifically, in the first method, for each
of the two PHQ-9 intervals, we remove data uniformly at
random so that the percentage of missing data in the resultant
matrices is p. As an example, if p = 10% and the original
time coverage is 93.9%, then it means that we removed 3.9%
of the data so that the end result has 10% of missing data.
We vary p to 10%, 15%, and 20%. For each p, we repeat the
above data removal procedure for each of the two matrices
for 25 times. Fig. 3(a) plots the CDF of the distances between
imputed coordinates and the ground-truth coordinates for MF,
MICE and NNM, where p = 10% or 20% (obtained from 3242
and 14042 distance values, respectively). For each method, the
result for p = 15% is between those for p = 10% and 20%, and
is omitted for clarity. We observe that, for each method, not
surprisingly, the error is lower for lower p; for a given p, the
MF based imputation method leads to the best results. However,
even for MF, 10.3% of the distances are larger than 500 meters
when p = 10%, and 17.6% of the distances are larger than 500
meters when p = 20%, indicating that the imputation can lead
to large errors, particularly for large p. The large errors are
partially because we imputed the longitude and latitude values
independently (since these imputation methods are matrix based,
we represented longitude and latitude values in two separate
matrices), and hence the errors in both dimensions contributed
to the final error (quantified as the distance between the imputed
and ground-truth coordinates). Indeed, we confirmed that if the
data in one dimension (the longitude or latitude) were known
and only the remaining dimension needs to be estimated, the
resultant errors become much smaller (figures omitted).

We next report the results when removing entries in one
PHQ-9 interval following the pattern of missing data in another
PHQ-9 interval. Specifically, for a matrix M1, we remove the
entries following the missing data positions in another matrix
M2, so that an entry in M1 is removed if its corresponding
position in M2 has a missing value. In this way, we remove
entries in M1 by replicating the missing data patterns in M2.
This method of removing data provides a better “simulation"
of missing data compared to the previous method of removing
data uniformly at random. We apply the above procedure to the
two PHQ-9 intervals that have the highest time coverage, by
regarding them as M1 and M2, respectively (again, the longitude
and latitude matrices are treated separately). Specifically, we
apply the missing pattern of M1 to M2, and evaluate the samples
that are not in the resultant matrix, while they are in M2, to
obtain the distances between the imputed coordinates and the
ground-truth coordinates. Similarly, we repeat the procedure
by apply the missing pattern of M2 to M1. In both cases, the
resultant matrix has 13.8% of missing data. Combining the
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two cases, we obtain 294 distance values between the imputed
coordinates and the ground-truth coordinates. Fig. 3(b) plots
the CDF of these distance values; the results for all three data
imputation methods, MF, MICE and NNM, are shown in the
figure. We again observe that MF leads to the best results.
However, even under MF, 13.5% of the distances are larger
than 500 meters. Again, part of the reason for the low accuracy
is that the estimates of longitude and latitude both introduce
errors.

C. Summary

To summarize, we observe significant amount of missing
GPS location samples for both Android and iPhone data.
We have used three schemes to impute the missing samples.
However, none of them provides satisfactory performance. In
the rest of the paper, we “impute" data by combining GPS
locations and WiFi association records. We first fuse two types
of location data that are collected on the phones, namely GPS
locations and WiFi association logs (see Section IV). We then
add the WiFi association data collected from campus WiFi
network to form an even more complete location dataset (see
Section V). For both scenarios, we present a data fusion method,
and evaluate the impact of more complete data on depression
screening. The first scenario involves using data collected only
from phones, thus it can be done easily in practice (only
involving running an app on a phone). The second scenario
requires collaboration from the campus network administrators,
which may not be always possible. It serves as a reference
scenario to quantify how much more benefits we can gain by
adding more data.

IV. FUSING LOCATION DATA FROM PHONES

In this section, we describe our approach for fusing location
data from two sources, GPS and WiFi association logs, both
from the LifeRhythm sensing app running on the phones. A
WiFi association event contains the time of the association
and the ID (specifically, the MAC address) of the AP. We use
the location of the AP to approximate the location of the user.
Fig. 4 plots the CDF of the number of WiFi association events
per day for a user. Both the results for Android and iPhone
users are plotted in the figure. We observe that the number of
WiFi association events can be up to 160 for iPhone users and
230 for Android users, indicating opportunities to augment the
GPS location data.

In the following, we first describe an approach to auto-
matically determine the geographic location (the longitude
and latitude) of the APs. We then describe how we fuse the
location data from the GPS and WiFi association logs. Finally,
we discuss the quality of the resulting fused location data.

A. Determining the Locations of the APs

The dataset that includes the WiFi logs from both Android
phones and iPhones contains 7768 unique APs. Some of the
APs are on UConn campus, while many are off campus.
Although the locations of the APs can be obtained manually
(e.g., through war-driving), the scale and the locality diversity
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Fig. 4: Number of WiFi association events per day (logged
through the smartphone app).

of our dataset make this infeasible1 On the other hand, since
our data is collected over a long period of time and for tens of
participants, it is likely that a GPS location is recorded while
a participant is associated with an AP. In this case, we can
obtain an estimate of the AP location automatically using the
GPS location. To accommodate the errors in GPS, we collect
a set of such estimates for each AP, and then use the median
of these estimates as the location of the AP. We next describe
the approach in more detail.

For an AP, we estimate its longitude and latitude as follows.
Suppose that a user associates with the AP at time t. We then
consider time interval [t−δ , t+δ ], where δ is a small threshold
value (we discuss how to select δ later). If we can find a GPS
location sample, `, for the user during the time interval, we
assume that the AP is close to `, and add ` as a possible
location value for the AP. Let L = {`i}= {(longi, lati)} be the
set that contains all the possible location values for the AP
when considering all the data that we have collected, where
longi and lati denote respectively the longitude and latitude of
the ith possible location value for the AP. We then determine
the longitude of the AP as the median of all the longitude values
in L, and determine the latitude of the AP as the median of all
the latitude values in L. The reason for using median instead
of mean is because it is less sensitive to outliers. Furthermore,
to avoid the bias caused by a small number of samples, we
only obtain an estimate for the AP if L contains at least K
values (we choose K = 3 for the rest of the paper).

We next describe how we choose δ . There is a clear tradeoff:
using a larger δ makes it more likely to find a GPS location
sample within the time interval [t−δ , t+δ ]; on the other hand,
it may include GPS locations that are far away from the location
of an AP. We set δ to 1, 2, 5, or 10 minutes. Correspondingly,
we obtain the geographic locations of 3092, 3722, 4671 and
5359 APs, respectively. As expected, we obtain the locations of
more APs when using a larger δ . In addition, for an AP, when
using a larger δ , we obtain more location estimates for the AP,
with a larger variation among the estimates. Specifically, for
L= {(longi, lati)}, i.e., the set of the location estimate for an AP,
we calculate the standard deviation of all the longitude values

1We have tried to obtain the AP locations from a public online database at
https://wigle.net. However, we were only able to find 27.7% of the APs
from the database. In addition, when plotting the retrieved locations on Google
map, we observe that they are mostly on the streets (not inside buildings),
which might be because the locations in the database are mostly obtained
from war driving. We did not use the data from this database in this paper.
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Fig. 5: Distribution of the standard deviation of the longitude
(a) and latitude (b) of the location estimates for the APs, δ is
1, 2, 5, or 10 minutes.
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Fig. 6: (a) Distribution of the pairwise distances of the APs in a
building (considering 248 buildings on campus). (b) Illustration
of estimated AP locations for one building.

in L. Fig. 5(a) plots the CDF of the standard deviation of the
longitude values for each AP that we have location estimates,
where δ = 1, 2, 5, or 10 minutes. Similarly, we obtain the
standard deviation of the latitude values (see Fig. 5(b)). We
observe a small gap among the distributions when δ = 1,2
and 5 minutes; the distribution when δ = 10 minutes differs
significantly from the other distributions. We use δ = 5 minutes
in the rest of the paper since it leads to relatively small standard
deviation, while allows a large number of AP locations to be
determined automatically.

To validate the above method for estimating AP locations,
we obtain the information of the APs on campus (i.e., the MAC
addresses of these APs and the buildings in which they are
deployed; the longitude and latitude information for these APs
are not available) from the University Information Technology
Services. In total, we obtain the information of the APs inside
248 buildings on campus. For each building, we obtain the
pairwise distances of all the APs that are known to be in
that building. Since the APs inside the same building are
relatively close to each other, we expect the pairwise distances
to be relatively small. Fig. 6(a) plots the CDF of the pairwise
distances considering all the 248 buildings. We see that over
82% of the distances are less than 200 meters, and 95% of
the distances are less than 400 meters, indicating reasonable
proximity among the APs inside one building. To further
validate the results, we visualize the locations of the APs
on the map for each of the 8 most commonly visited buildings

on campus. Fig. 6(b) plots the estimated locations of the APs
in one building. We see that these locations are indeed within
the boundary of the building or close to the building. Similar
results hold for the other buildings.

B. Fusing GPS and WiFi Sensing Data

We consider two types of events from GPS and WiFi
association logs: an event when getting a GPS location sample,
and an event when a phone associates with an AP. Each event
is associated with a time, a participant ID, location information
(i.e., longitude and latitude, which are the coordinates obtained
by GPS or the estimated location of the AP). For a participant,
this yields a series of events in time order. The interval between
two adjacent events is a random variable. In addition, each event
happens at a discrete point of time, while we are interested
in knowing the location information in continuous time. We
therefore need to estimate how long a location is valid (i.e., for
how long we can assume the participant is at that location).

We next describe how we fuse the two sources of location
information. Let E denote the sequence of events for a
participant. Consider two consecutive events, ei and ei+1. Let
`i and ti be the location and the time that are associated with
ei, respectively.

Android data. For Android data, we estimate how long `i is
valid by considering the following two cases.
• Case 1: ei is an event of getting a GPS sample. In this

case, we assume the location is `i for up to TG minutes
from ti, that is, the location is `i for [ti,min(ti +TG, ti+1)),
where ti+1 is the time associated with event ei+1. Here TG
is a threshold value. Since GPS is sampled at deterministic
intervals (every 10 minutes) and our measurements indi-
cate that the actual interval between two consecutive GPS
samples can be up to 15 minutes (due to the scheduling
of the phone), we assume TG = 15 minutes. That is, a
GPS sample is valid for up to 15 minutes. We further
consider activity information. Specifically, if a fast-moving
activity (i.e., running, cycling or in-vehicle) happens in
[ti,min(ti+TG, ti+1)), we then set the ending time to when
this activity happens, since a fast-moving activity can
change the current location significantly.

• Case 2: ei is an AP association event. In this case, we
assume the location is `i for up to TW minutes from ti.
Here TW is a threshold value. The reason for assuming
a heuristic TW is because WiFi association events are
captured using an event based mechanism (instead of
periodically), and the corresponding disassociation event
can be lost. We set TW to be time dependent: during
6am-10pm, it is 4 hours for weekdays and is relaxed
to 6 hours for weekends; otherwise, it is set to 8 hours.
While the value of TW is large, note that we assume the
location is `i for [ti,min(ti +TW , ti+1)), and hence it ends
when we observe the next GPS sample (which should
appear within 15 minutes if the event is captured) or
the next WiFi association event. In addition, we consider
dissociation events when determining the ending time.
Specifically, if a dissociation event happens at time t ∈
[ti,min(ti +TW , ti+1)), then we set the ending time to t,
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i.e., the location is `i for [ti, t). Last, as earlier, we also
incorporate fast-moving activities when determining the
ending time of location `i.

iPhone data. For iPhone data, since AP association events are
logged in a similar manner as that for Android, we use the
same method when ei is an AP association event (as described
in Case 2 above). When ei is an event of getting a GPS sample,
we again assume the location is `i for [ti,min(ti+TG, ti+1)) (as
described in Case 1 above). Here since GPS are captured using
an event-based mechanism (unlike the periodic logging as in
Android phones), we set TG, the maximum duration for which
a GPS location is assumed to be valid, using the same heuristic
as described in Section III: during 6am-10pm, it is set to 4
hours for weekdays and 6 hours for weekends; otherwise, it is
set to 8 hours.

For both Android and iPhone data, we process all the events
in E sequentially following the above approach. In addition,
we treat midnight (specifically, the time interval [0,6]am)
as a special case since a participant is likely to be asleep.
Specifically, if a time period in midnight is marked as unknown,
we simply set the location for this time period as the location
of the previous sample.

After fusing the data as above, we mark the time intervals for
which we do not have a location estimate as unknown. After-
wards, we discretize time into 1-minute intervals and record the
location for each 1-minute interval (it is marked as unknown if
we have no location information). This discretization supports
the location clustering algorithm that we use, which requires
samples of equal duration (see details in Section VI).

Fig. 7 illustrates our approach using an example from the
Android dataset. It shows a time period of 100 minutes. For
ease of illustration, only the latitude information is shown. The
top two subplots show the GPS samples (black triangle) and
WiFi association events (red circle), respectively. We observe 6
GPS samples in 100 minutes, and hence 4 samples are missing
(i.e., the coverage is 60%). The third subplot shows that the
GPS samples together with the WiFi association events, and
the last subplot shows the final results where we determine
the duration of each event and upsample the location data so
that every minute is marked with a location (a blank space
indicates unknown location). In the last subplot, right after the
70th minute, we see an example where a fast-moving activity
event marks the end of the current location. After the data
fusion, 87% of the time points are marked with locations, much
better than the 60% coverage before the data fusion.

C. Quality of the Data Fusion

We evaluate the quality of the data fusion according to two
metrics: (1) Are the locations obtained from the two sources
(GPS and WiFi association logs) consistent? (2) Does the
data fusion lead to a larger time coverage? To investigate
the consistency of the data sources, we calculate the distance
between two adjacent WiFi and GPS samples (i.e., they are
one minute apart). We observe that 99.4% of the distances
are below 1 km, and 98.3% of the distances are below 500
meters, indicating a reasonable consistency. Since the locations
of the APs are obtained from the GPS locations, we give GPS
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Fig. 7: Illustration of our approach for fusing location data.
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Fig. 8: Time coverage before and after the data fusion (only
using the data from the phones).

locations higher priority. Specifically, we consider the WiFi
samples that are more than 500 meters away from the adjacent
GPS samples as noise and remove them from the dataset.

Figures 8(a) and (b) plot the time coverage of the PHQ-9
intervals before and after data fusion for Andoid and iPhone
datasets, respectively. We show three cases of the time coverage
after data fusion. In the first case, only the location during
midnight (i.e., [0,6]am) is upsampled following the simple
heuristic in Section IV-B. We see that it improves the time
coverage only slightly. The second case, i.e., the curve marked
with “data fusion (w/ activity)”, represents the results of
our approach. It takes activity data (specifically, fast-moving
activities) into account when determining the ending time of
a location. The third case, i.e., the curve marked with “data
fusion (w/o activity)”, differs from the second case in that
activity data is not taken into account. As expected, the second
case leads to a lower time coverage compared to the third
case. On the other hand, the coverage is only slightly lower.
In the rest of the paper, the data fusion refers to the second
case. Comparing the results before and after data fusion in
Fig. 8, we observe that data fusion improves the time coverage
significantly. After data fusion, for Android data, more than
54% of the PHQ-9 intervals have time coverage above 80%,
while the value is only 30% before data fusion. For iPhone data,
more than 29% of the PHQ-9 intervals have time coverage
above 70%, while the value is only 10% before data fusion.



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2872569, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, VOL. X, NO. X, XXX 2017 8

Radio of reduction

0 0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

(a)

Reduction time (minutes)

0 20 40 60 80 100

C
D

F

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 9: The amount of reduction in WiFi association durations
(a) relative value (i.e., the ratio of the amount of reduction
over the duration), (b) absolute value of reduction.

V. FUSING DATA FROM CAMPUS WIFI NETWORK

So far, we have considered fusing two sources of location
data collected from smartphones. In this section, we consider
another data source, i.e., the WiFi association data collected
from the university campus WiFi network. Since all participants
of our study are the students at UConn, who spend a substantial
amount of time on campus and connect to the campus
WiFi network regularly (UConn has WiFi coverage in most
buildings), we expect that the WiFi association data recorded
by the university campus network can also provide important
information of the participants’ locations. As mentioned earlier,
our goal of considering this scenario is to quantify the additional
benefits when using data beyond what is collected on the
phones.

In the following, we first describe the characteristics of
the campus WiFi data, and then describe the methodology of
fusing it with GPS and WiFi data from phones. At the end,
we quantify the quality of the data fusion. The impact of the
data on depression screening is deferred to later sections.

A. Data Collection and Characteristics

We obtained the campus WiFi association data from the
University Information Technologies Services. Each WiFi
association record includes the MAC addresses of the phone and
the AP, the association time, and the duration of the association.
The records related to a participant are identified using his/her
MAC address, which is then replaced with his/her random ID.
Only the anonymized data is stored and used for data analysis.

Each record in the campus WiFi data includes the start
time and duration of an association event from a phone to an
AP. To assess the accuracy of the data, we asked a user (a
student in our lab) who lives on campus to manually record the
locations of his daily visits for several days. We then compare
the locations that were recorded manually (regarded as ground
truth) with those recorded in the campus WiFi dataset. We
observe that while the start time of an association is accurate,
the duration is sometimes longer than the actual duration. This
might be because sometimes when a user moves from one
building to another building, although the associated AP is
changed, the WiFi connection is still alive. In that case, the
logging device in the WiFi infrastructure may not regard this

change of AP as a new event, and fails to record the new AP.
Similar results have been observed for two other users who do
not live on campus, but come to campus regularly.

We correct the potential overlong durations by leveraging
the GPS and WiFi data collected from the phones. Specifically,
for a user, suppose the start time of an association is t and the
duration is d. If the phone sensing data indicates that a WiFi
or GPS sensing event happens at time t ′ ∈ [t, t +d]2, then we
set the duration to d = t ′− t, that is, we shorten the duration
so that the association ends at time t ′ (i.e., when we have data
from alternative sources). To be more conservative, we end
the association ∆ > 0 minutes earlier than t ′. Specifically, we
set the duration to d = max(1, t ′− t−∆) (i.e., the minimum
duration is 1 minute), where ∆ is set to 10 minutes empirically.
We used 138,905 association records from the campus WiFi
network, 16,337 (12%) of them meet the above criteria. Their
durations are reduced following the above methodology. Fig. 9
plots the amount of reduction for these durations.

B. Data Fusion Method and Data Quality

Considering both the WiFi data from the phones and the
data from the campus WiFi network, we have a total of 8677
APs, 1099 more than that when using the WiFi data from the
phones only. We apply the same methodology as that described
in Section IV-A to determine the locations of the APs. We are
able to determine the location of 5077 APs. For the records
with known locations, we fuse them along with GPS and WiFi
locations from the phone as follows. Suppose that an event
ei is an AP association event indicated by the campus WiFi
dataset, with the start time of ti, duration of di, and location of
`i. Then we simply assume the location is `i from ti to ti +di.

After data fusion, we again divide time into one-minute
intervals. For the intervals with known locations, we associate
the corresponding GPS coordinates to it for later data analysis.
To check whether the locations obtained using the campus
WiFi network data are consistent with those from the GPS
samples and the WiFi data from the phones, we consider each
location sample obtained from the campus WiFi network and
conduct the following analysis. When the sample adjacent to
it (i.e., the two samples are one minute apart) is from a phone
(either GPS or WiFi data), we calculate the distance between
these two adjacent samples. We observe that 97.8% of the
distances are below 1 km, and 93.3% of the distances are
below 500 meters, indicating a reasonable consistency. If a
location sample obtained from the campus WiFi network data
leads to a distance over 500 m, we regard it as noise and
remove it from the dataset.

Fig. 10 plots the time coverage of the PHQ-9 intervals for
the two data fusion scenarios, i.e., before and after fusing data
from the campus WiFi network. Fig. 10(a) is for the Android
dataset and Fig. 10(b) is for the iPhone dataset. We observe that
adding data from the campus WiFi network further improves
the amount of time coverage. For the Android dataset, after

2We preprocess the data so that the timestamps of the campus WiFi data
are consistent with those of the data from the phones. Specifically, the campus
WiFi data uses UTC or EDT time standard. The data collected from the phones
use New York time (by specifying the corresponding parameters in the app’s
API calls). We convert all the data to the same time standard beforehand.
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Fig. 10: Time coverage before and after fusing the data from
the campus WiFi network.

fusing the campus WiFi data, more than 83% of the PHQ-9
intervals have time coverage above 70% (compared to the vlaue
of 73% when only using location data from the phones). For
the iPhone dataset, the corresponding values are 60% versus
29%, respectively.

VI. IMPACT ON FEATURES

A set of features is extracted from the location data, which is
used to correlate with PHQ-9 scores (Section VII) and predict
depression (Section VIII). We next describe the set of features,
and then compare the feature values before and after data
fusion.

A. Feature Extraction

As in [15], we use the following 8 features extracted from
location data. The first four features are directly based on
location data, while the last four features are obtained based
on locations clusters. Specifically, we use DBSCAN [12], a
density based clustering algorithm to cluster the stationary
points (i.e., those with moving speed less than 1km/h).

Location variance. This feature [34] measures the variability
in a participant’s location. It is calculated as Locvar =
log(σ2

long+σ2
lat), where σ2

long and σ2
lat represent respectively

the variance of the longitude and latitude of the location
coordinates.

Time spent in moving. This feature, denoted as Move,
represents the percentage of time that a participant is moving.
We differentiate moving and stationary samples using the
approach in [34]. Specifically, we estimate the moving speed
at a sensed location. If the speed is larger than 1km/h, then we
classify it as moving; otherwise, we classify it as stationary.

Total distance. Given the longitude and latitude of two con-
secutive location samples for a participant, we use Harversine
formula [35] to calculate the distance traveled in kilometers
between these two samples. The total distance traveled during
a time period, denoted as Distance, is the total distance
normalized by the time period.

Average moving speed. In PHQ-9 questionnaire, one question
evaluates the mental health of a person based on whether she
is moving too slowly or quickly. Inspired by this question, we
define average moving speed, AMS, as another feature.
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Fig. 11: Time coverage of the valid PHQ-9 intervals before
and after data fusion.

Number of unique locations. It is the number of unique
clusters from the DBSCAN algorithm, denoted as Nloc.
Entropy. It measures the variability of time that a participant
spends at different locations. Let pi denote the percentage of
time that a participant spends in location cluster i. The entropy
and is calculated as Entropy =−∑(pi log pi).
Normalized entropy. It is EntropyN = Entropy/ logNloc, and
hence is invariant to the number of clusters and depends solely
on the distribution of the visited location clusters [34].
Time spent at home. We use the approach described in [34]
to identify “home” for a participant as the location cluster that
the participant is most frequently found between [0,6]am. After
that, we calculate the percentage of time when a participant is
at home, denoted as Home.

B. Features Before and After Data Fusion

We calculate the features for the PHQ-9 intervals. As
mentioned earlier, the Android dataset contains 229 PHQ-9
intervals, and the iPhone dataset contains 344 PHQ-9 intervals.
Before data analysis, we apply the filtering rules in [15] to
remove PHQ-9 intervals that do not have sufficient location
data. Specifically, we remove the PHQ-9 intervals in which
there are less than 13 days of data and there are less than 40%
of data points for the days with data. In addition, we remove
the PHQ-9 intervals with extreme values (when a participant
traveled an extraordinarily long distance, e.g., from the US to
Europe) and the PHQ-9 intervals with a single location cluster.
After applying the above filtering rules, the number of valid
PHQ-9 intervals in the Android and iPhone datasets reduces
to 148 and 212, respectively. After fusing the WiFi association
data collected from the phones, the number of valid PHQ-9
intervals increases to 179 and 221 for the Android and iPhone
datasets, respectively. After further fusing the data from the
campus WiFi network, the number of valid PHQ-9 intervals
remains the same for the Android dataset, while it increases
to 267 for the iPhone dataset. For both Android and iPhone
datasets, the time coverage for the valid PHQ-9 intervals for
the data fusion scenarios is significantly better than that before
data fusion (see Fig. 11).

The location clustering algorithm, DBSCAN, requires two
parameters, epsilon (the distance between points) and the
minimum number of points that can form a cluster (i.e., the
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Fig. 9:

Fig. 12: Features before and after data fusion for the Android
dataset: (a) location variance, (b) entropy, (c) number of
location clusters, and (d) amount of time spent at home. The
results of data fusion are for the dataset that fuses GPS and
WiFi data from the phones.
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Fig. 13: Features before and after data fusion for the iPhone
dataset: (a) location variance, (b) entropy, (c) number of
location clusters, and (d) amount of time spent at home. The
results of data fusion are for the dataset that fuses GPS and
WiFi data from the phones.

minimum cluster size). Before data fusion, we set the former
to 0.0005 (approximately 55 meters) and set the latter to
correspond to around 2.5 to 3 hours’ stay [15]. After data
fusion, we use a smaller epsilon since the interval between two
adjacent samples is only one minute. Specifically, we set it to
0.0002 or 0.0001 (we do not use a smaller value since 0.0001
corresponds to roughly 10 meters, which is about the resolution
of GPS). In the following, we only present the results when

using epsilon as 0.0002 after data fusion (the results for using
epsilon as 0.0001 are similar). The minimum number of points
after fusion is set to correspond to 2.5 hours’ stay (i.e., 160
since two adjacent locations are one minute apart after data
fusion).

We next compare the results of five features (location
variance and the four features based on location clustering)
before and after the data fusion; the results for the other
three features do not change much after data fusion. We only
present the results when fusing GPS and WiFi data from the
phones; the results when further fusing WiFi data from the
campus network show similar trend. Figures 12(a)-(d) plot
the results for the Android dataset. Fig. 12(a) is a scatter plot
that shows the location variance before and after the data
fusion. It differentiates two cases, when PHQ-9 score is above
5 (considered as mild depression) and when it is below 5.
We observe that for both cases the location variance tends
to become smaller after the data fusion. This is perhaps not
surprising since adding more location information leads to a
more complete picture of a person’s movement, reducing the
amount of sudden location changes due to missing data. We
further observe that the change for the case with PHQ-9 score
≥ 5 is more dramatic after the data fusion, compared to the
case with PHQ-9 score < 5. This might be because people with
depression tend to move less, and hence adding more locations
lead to a larger reduction in location variance. Fig. 12(b) shows
the results for entropy; the results for normalized entropy has
similar trend and is omitted. We observe that the entropy after
the data fusion also tends to be smaller than that before data
fusion. This might be because when using a smaller epsilon
after data fusion, the number of distinct locations is reduced
(as shown in Fig. 12(c)). We again see that the reduction for
the case when PHQ-9 score ≥ 5 is more dramatic than that
with PHQ-9 score < 5. Last, Fig. 12(d) plots the amount of
time spent at home before and after data fusion. We observe
more time spent at home after the data fusion; the impact of
data fusion is again more significant for the case when PHQ-9
score ≥ 5.

Figures 13 (a)-(d) plot the results for the iPhone dataset.
Similar as the results for the Android dataset, we observe that
data fusion tends to lead to better separation of the data points
with PHQ-9 score ≥ 5 and those with PHQ-9 score < 5.

VII. CORRELATION ANALYSIS

In this section, we correlate the features with PHQ-9
scores. We first consider individual features, and then consider
regression using multiple features. In both cases, we compare
the results before and after data fusion to highlight the impact
of having more complete data.

A. Single Feature Correlation Results

Tables I and II present the Pearson’s correlation coefficients,
along with the p-values (obtained using significance level α =
0.05), between the features and PHQ-9 scores for the Android
and iPhone datasets, respectively. The tables show the results in
three cases, before data fusion, after fusing the WiFi data from
the phones (marked with “phone only"), and after further fusing
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no data fusion data fusion data fusion
(phone only) (phone + campus WiFi data)

Features r-value p-value r-value p-value r-value p-value
LocVar −0.15 0.07 −0.24 0.001 −0.26 10−4

Distance −0.13 0.11 −0.04 0.62 −0.08 0.27
AMS −0.09 0.28 −0.04 0.62 −0.04 0.56
Move 0.06 0.43 −0.11 0.11 −0.09 0.19
Entropy −0.16 0.05 −0.28 10−4 −0.29 10−5

EntropyN −0.21 0.01 −0.26 10−4 −0.26 10−4

Home 0.18 0.03 0.23 0.003 0.23 0.001
Nloc −0.09 0.28 −0.16 0.03 −0.16 0.003
Multi-feature
model (linear) 0.26 0.001 0.33 10−5 0.36 10−7

Multi-feature
model (RBF) 0.33 10−5 0.46 10−9 0.45 10−9

TABLE I: Correlation between features and PHQ-9 scores for the Android dataset.

no data fusion data fusion data fusion
(phone only) (phone + campus WiFi data)

LocVar −0.09 0.17 −0.18 0.003 −0.14 0.01
Distance −0.13 0.04 −0.14 0.03 −0.16 0.003
AMS −0.12 0.05 −0.17 0.007 −0.16 0.003
Move 0.13 0.04 −0.14 0.03 −0.09 0.11
Entropy −0.12 0.05 −0.19 0.004 −0.23 10−4

EntropyN −0.11 0.08 −0.16 0.01 −0.21 10−4

Home 0.08 0.16 0.17 0.01 0.14 0.01
Nloc −0.15 0.02 −0.14 0.03 −0.17 0.004
Multi-feature
model (linear) 0.26 10−4 0.27 10−5 0.29 10−6

Multi-feature
model (RBF) 0.30 10−6 0.41 10−12 0.48 10−14

TABLE II: Correlation between features and PHQ-9 scores for the iPhone dataset.

the data from the campus WiFi network (marked with “phone +
campus WiFi data"). For both Android and iPhone datasets, we
see that the correlation results after data fusion are significantly
stronger than those before data fusion. On the other hand, the
correlation results under the two data fusion cases are similar;
adding the data from the campus WiFi network only leads to
slightly stronger correlation.

For the Android dataset, four features, location variance,
entropy, normalized entropy, and time spent at home, are
correlated with PHQ-9 scores both before and after data fusion.
In addition, for all these four features, the correlation results
are improved after data fusion. We also observe that, after data
fusion, the number of unique clusters becomes another feature
that is correlated with PHQ-9 scores (both the correlation and
p-value improve significantly after the data fusion).

For the iPhone dataset, five features, distance traveled,
average movement speed, entropy, normalized entropy, and the
number of unique clusters are correlated with PHQ-9 scores.
After data fusion, the correlation for all these five features have
improved. In addition, two other features, location variance
and time spent at home, become correlated with PHQ-9 scores
as well.

B. Regression Results

We used the features to predict PHQ-9 scores following the
two approaches that have been used in [15], i.e., `2-regularized

ε-SV (support vector) multivariate regression [13] and radial
basis function (RBF) ε-SV multivariate regression [8]. Through-
out, we used leave-one-out cross validation to optimize model
parameters (leave-one-out here refers to leave one user out
so that the data of one user is either used for training or
testing, to avoid outfitting the models). For `2-regularized ε-
SV regression, this entails optimization of the cost parameter
C (selected from 2−10,2−9, . . . ,210) and the margin ε (selected
from [0,5]). For RBF ε-SV regression, this entails optimization
of cost parameter C and the margin ε (both selected in the
same ranges as those for the other model), and the parameter γ

of the radial basis functions (selected from 2−15,2−14, . . . ,215).

For the Android dataset, when using `2-regularized ε-SV
regression, the optimal values of log(C) and ε are 10 and 4.1
respectively before data fusion, 15 and 4.8 respectively in the
first data fusion scenario (i.e., when fusing GPS and WiFi
sensing data from the phones), and 12 and 4.3 respectively
in the second data fusion scenario (i.e., when further adding
campus WiFi data). When using RBF ε-SV regression, the
optimal values of log(C), ε , and γ are −4, 3.5 and −8
respectively before data fusion, −3, 2.8 and −2 respectively in
the first data fusion sceneario, and −5, 3 and −5 respectively
in the second data fusion scenario. The last two rows of Table I
present the correlation results from these two regression models.
We observe that for both regression models, the correlation
after data fusion is significantly better than that before the data
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fusion, indicating that the more complete data after data fusion
leads to better prediction models for PHQ-9 scores. On the
other hand, the correlation results under the two data fusion
scenarios are similar.

For the iPhone dataset, when using `2-regularized ε-SV
regression, the optimal values of log(C) and ε are 12 and
3.5 respectively before data fusion, 14 and 4.8 respectively
in the first data fusion scenario, and 10 and 4.7 respectively
in the second data fusion scenario. When using RBF ε-SV
regression, the optimal values of log(C), ε , and γ are 1, 1.2 and
3 respectively before data fusion, 1, 3.2 and 2 respectively in
the first data fusion scenario, and −1, 0.7 and 2 respectively in
the second data fusion scenario. The last two rows of Table II
show the correlation results from these two regression models.
We observe consistent results as those for the Android dataset.

VIII. CLASSIFICATION RESULTS

We used the same approach as that in [15] to train Support
Vector Machine (SVM) models with an RBF kernel [8] to
predict clinical depression (where the assessment from the study
clinician is used as the ground truth). The SVM model has
two hyperparameters, the cost parameter C and the parameter
γ of the radial basis functions. We used a leave-one-out cross
validation procedure to choose the values of C and γ (again,
leave-one-out refers to leave one user out so that the data of
one user is used in either trading or testing, but never in both,
to avoid overfitting). Specifically, we selected both C and γ

from the following choices 2−15,2−14, . . . ,215, and chose the
values that gave the best validation F1 score. The F1 score is
defined as = 2(precision× recall)/(precision+ recall). It can
be interpreted as a weighted average of the precision and recall,
ranges from 0 to 1, and the higher, the better.

We repeated the above SVM training and testing procedures
in two settings. In the first setting, we only used sensing features
as predictors whereas in the second setting, we included PHQ-9
scores as an additional predictor. In addition, for each setting,
we explored three scenarios, before data fusion, after fusing
the WiFi data from the phones, and after further fusing the
data from the campus WiFi network.

Table III presents the results for the Android dataset. The
optimal values of the parameters are also shown in the table.
The data are from 22 users (the data from 3 users are not used;
their data are filtered out when applying the filtering rules in
Section VI-B), 5 depressed and 17 non-depressed users. We
observe that data fusion substantially improves the classification
results. In the first setting (i.e., only using the features, not
including PHQ-9 scores), data fusion increases the F1 score
from 0.50 to 0.66 and 0.67 for the two data fusion scenarios,
respectively, both significantly better than that when using
PHQ-9 scores alone (the last row of Table III), confirming
that sensing data collected from smartphone data provides a
promising direction for depression screening.. In the second
setting (i.e., using both the features and PHQ-9 scores), data
fusion increases the F1 score from 0.53 to 0.73 for both data
fusion scenarios, again demonstrating the advantage of data
fusion. From the above two settings, we further observe that
fusing the WiFi sensing data from the phones alone is sufficient

to achieve most of the gains; adding the campus WiFi data
only improves the performance slightly.

Table IV presents the results for the iPhone dataset. The
data before data fusion as well as the data for the first data
fusion scenario is from 42 users (12 depressed and 30 non-
depressed); the data for the second data fusion scenario is from
46 users (12 depressed and 34 non-depressed). We observe
similar results as those for the Android dataset.

In the above, we have presented binary classification results.
In the following, we present results of probability estimates
for each class. Specifically, in our context of two classes
(depression and not depression), let x represent the observations
and y represent the class label; we would like to obtain the
posterior probability of a class, P(y = i | x), i = 1,2. Our
results are obtained using the software package in [8], which
implements the schemes in [42], [24]. Figures 14 and 15 plot
the results for the Android and iPhone datasets, respectively.
In each figure, we present the results for three cases, no data
fusion, data fusion when using the GPS and WiFi association
data collected on the phones, and data fusion when using both
the data from the phones and the campus WiFi network. In
each figure, we plot two curves, both representing the CDF
of the posterior probability estimates of being depressed for
a group of users; the curve marked with “Non-depressed" is
for the group of non-depressed users, and the curve marked
with “Depressed" is for the group of depressed users. Ideally,
the CDF for non-depressed users approaches the top left (i.e.,
the probability of being depressed is low), while the CDF for
depressed users approaches the bottom right (i.e., the probability
of being depressed is high). We observe that the probability
estimates after data fusion are indeed closer to the ideal results
compared to those before data fusion, indicating that data
fusion helps to improve the probability estimates. We again
observe that the results for the two data fusion scenarios (i.e.,
when fusing GPS and WiFi data collected from the phone, and
when further adding the campus WiFi data) are similar.

IX. RELATED WORK

Several recent studies use smartphone sensing data to
predict depressive mood or depression [41], [17], [6], [34],
[2], [29], [44], [40], [32], [14], [15], [7], [25]. Saeb et al. [34]
extracted features from phone usage and mobility patterns
and found a significant correlation with self-reported PHQ-9
scores. Canzian and Musolesi [6] trained both general and
personalized SVM models using mobility features, and found
personalized models lead to better performance. Wang et
al. [41] reported a significant correlation between depressive
mood and social interaction (specifically, conversation duration
and number of co-locations). Mehrotra et al. [29] demonstrated
the association of depressive states with the smartphone
interaction features (including phone usage patterns and overall
application usage logs). Farhan et al. [15] showed behavioral
data from smartphones can predict clinical depression with
good accuracy, and combining behavioral data and PHQ-9
scores can provide prediction accuracy exceeding each in
isolation. Suhara et al. [38] developed a deep learning based
approach that forecasts (instead of detects or predicts) severely
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F1 Score Precision Recall Specificity log(C) γ

Features (no data fusion) 0.50 0.65 0.41 0.71 9 -2
Features (data fusion,
phone only) 0.66 0.83 0.56 0.88 4 -2

Features (data fusion,
phone + campus data) 0.67 0.83 0.57 0.88 3 -1

PHQ-9 Score & Features
(no data fusion) 0.53 0.65 0.44 0.70 10 -3

PHQ-9 Score & Features
(data fusion, phone only) 0.73 0.81 0.66 0.82 7 -4

PHQ-9 Score & Features
(data fusion, phone + campus data) 0.73 0.80 0.67 0.83 8 -5

PHQ-9 Score only 0.60 0.51 0.71 0.63 N/A N/A

TABLE III: Classification results for the Android dataset.

F1 Score Precision Recall Specificity log(C) γ

Features (no data fusion) 0.50 0.59 0.42 0.77 8 -2
Features (data fusion,
phone only) 0.76 0.77 0.76 0.77 10 -5

Features (data fusion,
phone + campus data) 0.77 0.76 0.77 0.70 9 -2

PHQ-9 Score & Features
(no data fusion) 0.64 0.77 0.55 0.87 4 -2

PHQ-9 Score & Features
(data fusion, phone only) 0.78 0.80 0.75 0.82 10 -4

PHQ-9 Score & Features
(data fusion, phone + campus data) 0.79 0.77 0.79 0.72 4 -4

PHQ-9 Score only 0.67 0.61 0.75 0.63 N/A N/A

TABLE IV: Classification results for the iPhone dataset.
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Fig. 14: Probability estimates of being depressed for the Android dataset.

depressive mood based on self-reported histories. The study
in [25] developed a heterogeneous multi-task learning approach
for analyzing sensor data collected over two major smartphone
platforms and Fitbit, and demonstrated that the various sensing
features are correlated with QIDS scores, and can predict
the QIDS score and depression severity accurately. Our study
differs from all the above studies in that we develop an approach
for fusing location data from GPS and WiFi association records,
and investigate the impact of more complete data on depression
screening.

More broadly, there is rich literature on analyzing sensing
data collected from smartphones for smart health applica-
tions [28], [22], [4], [30], [31], [9], [20], [18]. For instance,
BeWell [22] is a personal health monitoring app that analyzes
physical activity, sleep and social interaction in order to
provide feedback on user lifestyle. The study [4] automatically

recognizes stress from smartphone’s social interaction data,
weather data and self-reported personality information. The
study [27] examined the effect of illness and stress on behavior.
The study in [9] demonstrated the feasibility and utility of
modeling the relationship between affect and homestay using
fine-grained GPS data.

Data fusion has been researched for different purposes, e.g.,
for activity recognition [33], evaluating sensor accuracy [26],
[11], decentralized sensing [11], car navigation [39], and
augmented reality [3]. To the best of our knowledge, our study
is the first that fuses location data by combining GPS data and
WiFi association records collected on smartphones.

X. CONCLUSION, LIMITATION AND FUTURE WORK

In this paper, we have presented an approach that fuses
location data collected from two sources, GPS and WiFi
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Fig. 15: Probability estimates of being depressed for the iPhone dataset.

association records, on the phones. The resultant dataset
presents much better coverage of user locations. Our evaluation
demonstrates that the more complete data leads to features that
are more strongly correlated with PHQ-9 scores, and leads
to better depression screening. In addition, we investigated
a scenario where we included data from the campus WiFi
network. Our results showed that just using data from the
phones (by fusing GPS and WiFi data collected from the
phones) is sufficient to achieve most of the performance gains
in achieving accurate depression prediction.

Our study was conducted at a university, using a dataset
collected from 79 colleges students. This setting allowed us
to use the data collected from the campus WiFi network to
complement the fused data (from GPS and WiFi association
records) from the phones, and investigate how much benefits
the additional data source can provide. In other cases, it may
not be infeasible to include additional data from a WiFi network
infrastructure. On the other hand, our results have shown that
just using the data collected from the phones (GPS and WiFi
data) is sufficient to obtain most of the gains in predicting
depression.

Our approach of fusing GPS and WiFi data collected from
the phones can be applied to other settings. Our results were
obtained using a dataset from college students; results in other
settings may differ from ours. Investigation in other settings
(different locations and demographics) will be interesting,
and is left as future work. Another direction of future work
is to investigate effective data imputation methods that can
handle longitude and latitude data jointly, which may provide
better imputation results compared to the traditional matrix
completion based approaches.
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