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Abstract—Materials Genomics initiative has the goal of rapidly
synthesizing materials with a given set of desired properties using
data science techniques. An important step in this direction
is the ability to predict the outcomes of complex chemical
reactions. Some graph-based feature learning algorithms have
been proposed recently. However, the comprehensive relationship
between atoms or structures is not learned properly and not
explainable, and multiple graphs cannot be handled. In this
paper, chemical reaction processes are formulated as translation
processes. Both atoms and edges are mapped to vectors represent-
ing the structural information. We employ the graph convolution
layers to learn meaningful information of atom graphs, and
further employ its variations, message passing networks (MPNN)
and edge attention graph convolution network (EAGCN) to learn
edge representations. Particularly, multi-view EAGCN groups
and maps edges to a set of representations for the properties
of the chemical bond between atoms from multiple views. Each
bond is viewed from its atom type, bond type, distance and
neighbor environment. The final node and edge representations
are mapped to a sequence defined by the SMILES of the molecule
and then fed to a decoder model with attention. To make full
usage of multi-view information, we propose multi-view attention
model to handle self correlation inside each atom or edge, and
mutual correlation between edges and atoms, both of which are
important in chemical reaction processes. We have evaluated our
method on the standard benchmark datasets (that have been used
by all the prior works), and the results show that edge embedding
with multi-view attention achieves superior accuracy compared
to existing techniques.

Index Terms—Computational Chemistry, Attention Model,
Representation Learning.

I. INTRODUCTION

Synthesis of novel materials with desired properties is a cen-
tral problem of enormous economic implications in materials
science and Materials Genomics, in particular. In this context,
the construction of a target molecule from a set of existing
reactants and reagents is of interest. If a molecule can be
represented as a string, the search space of possible candidate
outcomes is O(kl), where l is the length of the outcome,
and k is the number of different types of atoms appearing
in the reactants. Extensive research has been conducted in
the past decades to formalize the outcomes of reactions. This
formalization forms the basis for solving synthesis problems.
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The most challenging task in modeling any chemical re-
action process is to locate the reaction sites. The reaction
sites are the locations that re-organize the molecular graph,
or SMILES string. However, the naive SMILES with one-hot
or simple encoding fails to reflect the underlying chemical or
physical properties of the atoms or edges. As a consequence, a
complex prediction model directly applied to one-hot encoded
SMILES requires a significantly large number of trainable
parameters and long training times. Proper representation is
required to reduce the complexity and improve the accuracy
and generalization of the model. However, the widely used
simplified molecular-input line-entry system (SMILES) [1]
lacks the structural and distance information.

Currently, molecular representation learning focuses on
atom embedding. Graph Convolutional Networks (GCN) based
methods have been developed and successfully used to address
tasks [2] such as matrix completion [3], social networks analy-
sis [4], element representations [5], [6], and generating finger-
prints from molecular graphs [7]. For molecule representation
learning, the model can potentially learn the structural in-
formation inside molecules. However, previous works neglect
the diverse properties of chemical bonds which could play an
important role in outcomes prediction. A good representation
should reflect the bond energy of a chemical bond during
the chemical reaction process, which directly determines the
possibility of being a reaction site. [8] proposed a multi-step
update rule to learn representations for both nodes and edges,
which is suitable to learn edge information in molecule graphs.
[9] proposed a multi-view approach where the edges were
grouped such that the edges in the same group have similar
properties. The edge representation is defined as a function of
its atom pair type, bond order, aromaticity, conjugation, and
ring status. The paper shows promising results for molecular
embedding and property prediction. In this paper, we consider
three methods GCN, MPNN and EAGCN in the molecule
graph embedding procedure.

Given a property molecular representation, we further need
to design an efficient model for molecule generation. Possible
candidates are generating graphs and Long-Short Term Mem-
ory (LSTM) based sequence to sequence (Seq2Seq) translation
models. Graph generating models can be embedded naturally
with GCN representation learning. However, generating graphs



are much more challenging to process than generating strings
due to the extra geometric information of graphs. The ad-
vantage of employing translation models compared to graph-
based models is the feasibility of the generation process. In this
paper, we first embed the atoms and bonds through an edge
embedding graph convolution neural network, and then feed
to Seq2Seq model to generate the outcomes. During the de-
coding process, the decoder outputs atoms by considering the
corresponding chemical bonds through attention mechanisms
to determine the reaction site. We evaluate the effectiveness of
the learned representation by comparing the output accuracy
with pure Seq2Seq and atom embedding models. We also show
that the multi-view representation is more efficient than single-
view representation learning.

In [10], the authors show the effectiveness of applying
Seq2Seq models to predict chemical reaction outcomes. How-
ever, they do not utilize the structure of the molecules.
For instance, reaction outcomes could depend on interatomic
distances which are ignored in the algorithm. Moreover, tradi-
tional attention mechanics in Seq2Seq models can only handle
single-view (inter-atom) correlations, which is not sufficient
when multiple properties are considered. In the chemical reac-
tion process, multiple correlation between different properties
of atoms and between atom and edge should be considered.
In this paper, we take two way attention to model the inter-
action between atom embedding view and edge embedding
view(mutual correlation) and multi-way attention to handle
multiple view inside each atom or edge embedding(self corre-
lation). The attention factors from different views are finally
combined and the final attention score is calculated as part of
inputs to the Seq2Seq decoder.

Salient features of our work are: 1) We propose a novel
multi-view attention mechanic in Seq2Seq model for molecule
prediction. Both self and mutual correlations are calculated to
generate final attention score. 2) Our approach significantly
improves the prediction accuracy for predicting the outcomes
of complex chemical reactions. 3) We compare different
embedding methods and provide meaningful results. We con-
clude that the edge embedding can extract meaningful and
distinguishing information for the molecules. 4) Our attention
results provide certain extent of interpretability on importance
of different sites.

II. RELATED WORK

The predicting models for chemical reactions can be catego-
rized into two types: template-based models and template-free
models. Due to the template coverage and the complexity of
a chemical reaction, template-free method is more suitable for
the problem.

[11] have shown that organic molecules contain fragments
whose rank distribution is, to some extent, identical to that
of sentence fragments. Their results indicate that organic
chemistry and human language follow very similar laws, which
provides guidance to use linguistics-based analyses in the
area of chemical reactions. [12] used a novel approach based
on Weisfeiler-Lehman Networks (WLN). They trained two

independent networks on a set of 400,000 reactions extracted
from US patents. The first WLN scored the reactivity between
atom pairs and predicted the reaction center. All possible bond
configuration changes were enumerated to generate product
candidates. The candidates that were not removed by hard-
coded valence and connectivity rules are then ranked by a
Weisfeiler-Lehman Difference Network (WLDN). Jin, et al.,
[12] claimed to outperform template-based approaches by a
margin of 10% after augmenting the model with the unknown
products of the initial prediction to have a product coverage
of 100% on the test set. Nam and Kim [13] used a template-
free Seq2Seq model to predict reaction outcomes. Whereas
their network was trained end-to-end on patent data and self-
generated reaction examples, they limited their predictions
to textbook reactions. Further, the authors of [10] view the
reaction prediction task as a translation problem and solve it
using natural language processing methods such as Sequence
to Sequence (Seq2Seq) models. The model is designed to learn
the mapping from the input sequence to the output sequence
directly, based on the statistical relationships among the atoms,
instead of using expert created and/or machine learned rules.
Any molecule is represented as a sequence using the SMILES.
However, both [13] and [10] failed to employ the structural
information of a molecule graph.

For molecular graph embedding, GCNs have been employed
as protein interface prediction [14], molecular representation
and prediction [6], [15], [16]. The work [17] presented a
convolutional neural network that operates directly on raw
molecular graphs and generalizes standard molecular feature
extraction methods based on circular fingerprints (ECFP)
[18]. Based on the autoencoder model, [7] converted discrete
representations of molecules to a multidimensional continuous
one. To gain additional information from bonds, the following
methods have been proposed. Here the bonds are labeled with
numerous attributes including the atom pair type or the bond
order. [16] proposed a graph-based model that utilizes the
properties of both the nodes (atoms) and the edges (bonds) by
calculating an edge matrix for all pairs of atoms. Similarly,
[19] created atom feature vectors concatenated with their
respective connecting bond features to form atom-bond feature
vectors. In these works, node features and bond attributes
are treated equally. In [15], the author proposed a message
passing network that aggregates the local information form the
neighbor nodes. Both the node and edge representation can be
learned. However, edge attentions imply various interaction
types between atomic pairs. The diversities of edges are of
great importance for the chemical reaction. For instance, [20]
has proposed an attention framework to update the edge
representation based on the structure of the graph. While this
method can handle single large graphs well, it is not suitable
for multi-graph datasets, since the learned attention weights
from one graph cannot be applied to another graph.

III. METHODS

We present an end-to-end learning framework for the chemi-
cal reaction prediction. The framework consists of two compo-



nents: graph embedding for learning comprehensive node and
edge representations, and an attention-based Seq2Seq model
for generating the outcomes of chemical reactions.

Given the SMILES strings as the inputs, we first convert
strings into molecular graphs using the RDKIT package. The
first step is to employ two edge attention graph convolution
layers (EAGCN) [9] to learn atom feature vectors and the edge
feature vectors. After this step, the node edge representation is
fed to a sequence to sequence model. The whole Graph2Seq
model is trained with true dependency from the graphs. The
attention layer and the decoder will focus on not only atoms
but also chemical bonds during the atom generation procedure.
After decoding, we propose to use a space matching method
to limit the output search space, and also validate the output
sequence using the RDKIT library.

A. Representation Learning on Molecular Graphs

In this section, we introduce three methods for graph
representation learning. The comparison of three methods will
show that EAGCN is a suitable way to learn atom feature
vectors and the edge feature vectors.

We denote a graph as G = (V,E), where V is a set of
nodes with |V | = N , and E ⊆ V × V is a set of edges with
|E| = M . An adjacency matrix A is a square binary matrix.
X is a feature matrix, where the i-th row represents the feature
vector of node i and the j-th column is the vector of feature j
for all the nodes. In addition, the edges in the graph have K
number of possible edge attributes. For the layer l, the input
contains a node feature matrix H l ∈ RN ×RF , where the i-th
row represents features of the node i. Here F is the number of
features in each node. When l is equal to 1, the input feature
matrix H1 is X . The linear transformation from the input of
the layer l to its output is parameterized by matrix coefficients
{W l

k ∈ RF × RF ′
k |1 ≤ k ≤ K}.

1) Traditional Graph Convolutional Networks (GCN).:
Graph convolution networks are proposed [21] to learn repre-
sentations of the nodes in a graph. Each hidden layer in GCN
is formulated as:

f(H l) = σ(D−
1
2 (A+ I)D−

1
2H lW l), (1)

where D is the diagonal node degree matrix. The neighboring
information is aggregated for each layer and more global
information is learned with deeper layers. However, only the
node representation is learned in GCN and the important edge
information is missing.

2) Message Passing Neural Networks (MPNN).: Message
Passing Neural Networks is a variation of GCN in that it
leverages the assumption of the continuous edge features and
introduce a two-phase passing scheme. The learning phase is
defined as:

ml+1
n =

∑
u∈ne(n)

M l(hln, h
l
u, e(n,u)),

hl+1
n = U l(hln,m

l+1
n )

el(n,u) = El(h
l
n, h

l
u, e

l
(n,u)).

(2)

The third equation employed edge update [8] and can learn
the edge representation of molecule graph. The continuous
edge property is suitable to encode distance information in a
molecule graph, but it cannot provide explainable information
for multiple edge features and it cannot handle relations
between multiple graphs.

Since MPNN with edge embedding also contains two views
(atoms and edges), we also apply our multi-view attention
model on MPNN. However, the atom embedding is vector for
single atom, thus only intra atom/edge attention is applied.

3) Edge Attention based GCN (EAGCN).: The edge atten-
tion graph convolution layer (EAGCN) [9] provides a promis-
ing way to learn multiple relational strengths (views) of node
interactions with neighbors using the edge attributes. Sharing
the attention weights across different molecular graphs helps
to learn the inherently invariant properties in multiple graphs.
Meanwhile, with the edge attention, more reasonable node
representations are generated which aggregates neighboring
information based on node-to-node interactions. Each EAGCN
layer generates both node and edge representations, as is
illustrated in Fig 1.

All the datasets used in the paper have K = 6 edge
attributes. Each attribute has several discrete values, which
means each attribute has different edge types. For edge at-
tribute i, all the learnable attention weights assigned for edge
types are grouped as an edge attention weighted adjacency
dictionary Dlk as shown in Figure III-A3. We have K different
edge attributes for the dataset, as shown in Table I. If the
edge feature contains dk discrete values for the edge attribute
k ∈ K, EAGCN creates a dictionary Dlk ∈ Rdk for modeling
the strengths of interaction for edge attribute k in layer l. The
weights {αk,j , 1 ≤ j ≤ dk} in dictionary Dlk will be learned
by our model. For all the edge attributes, a set of dictionaries
will be created as {Dl

1, ...,D
l
K}, which is not only shared for

one graph but also used for all the graphs in the dataset.
Using the dictionary set, EAGCN obtains a set of weighted

adjacency matrices {Alatt,k, 1 ≤ k ≤ K} corresponding to
multiple edge attributes. The weight αlk for edge e in edge at-
tention weighted matrix Alatt,k is obtained by lookup table op-
erations illustrated in [9]. By combining all the edge attention
matrices {Alatt,1, ..., Alatt,K}, we get the edge representations
tensor A ∈ Rn×n×K . Hence each edge representation is a
K dimensional vector in A, which will be learned during the
backpropagation. Then node representations will be updated
and generated using the edge attention weighted matrices
based multi-view graph convolutional layer as below.

In each graph convolution layer, we consider the node
information aggregation over the neighbors followed by a
linear transformation:

Rl+1
k = σ(Alatt,kH

lW l
k), (3)

for 1 ≤ k ≤ K, where σ is an activation function. After
computing, we get a set {Rl+1

k ∈ RN × RF ′
k |1 ≤ k ≤ K}.

Then the node feature matrix Rl+1 is the concatenation of all



Fig. 1. The edge attention based multi-view graph convolutional layer for node and edge representation learning. Attention dictionary for relation or view
k is defined based on the kth edge attribute. Attention matrix is then formed from the values in the dictionary. The k generated matrices Al

att,k are fed to
EAGCN layer. The output of the model is a set Hl

k of node representations and a set of multi-view edge representations. For the bond between node p and
node q, the edge representation is described as a vector [Al

att,1[p][q],A
l
att,2[p][q]...,A

l
att,k[p][q]], where k is the number of views.

the items in this set:

Rl+1 = [Rl+1
1 , Rl+1

2 , ..., Rl+1
K ]. (4)

B. Nested Seq2Seq Model

In order to translate from the embedded atoms to the
sequence of the products, we propose a nested attention based
Seq2Seq for atom representation and edge representation.
The Seq2Seq model consists of two distinct recurrent neural
networks (RNN): (1) an encoder that processes the input vector
and outputs its representation, and (2) a decoder that uses
this representation to output a probability over a prediction.
For these two RNNs, we apply the long short-term memory
(LSTM) [22] considering the potential length of the molecule
and the ability to handle long-range relations in sequences. An
LSTM consists of units that process the input data sequentially.
Each unit at each time step t processes an element of the input
xt and the network’s previous hidden state ht−1. In our model,
since both the atom and edge representations are fed to an
RNN, we use two separate LSTM units to learn and update
atom representation and edge representation simultaneously.
As a consequence, there will be two outputs for each recurrent
state and both of them will be fed to the attention network.
When predicting the product, the decoder will pay attention to
not only the atom information but also on edge information.
The structure of the network can be viewed in Figure 2.

Nodes and edges use a different set of parameters but in a
nested way. The output and the hidden state transition of the
representation are defined by:

Fig. 2. The Nested Seq2Seq model. Atom and edge representations provide
two views to the Seq2Seq model. The decoder will focus on both information
and decides the reaction sites.

igt = σ(W g
i · x

g
t + Ugi · h

ḡ
t−1 + bgi ),

fgt = σ(W g
f · x

g
t + Ugf · h

ḡ
t−1 + bgf ),

ogt = σ(W g
o · x

g
t + Ugo · h

ḡ
t−1 + bgo),

cgt = fgt × c
ḡ
t−1 + igt × tanh(W g

c · x
g
t + Ugc · h

ḡ
t−1 + bgc),

hgt = ogt × tanh(cḡt−1),
(5)

where g ∈ {a, e}. Note that xat denotes the tth element
encoded by the output of the final output of EAGCN. igt , fgt
and ogt are the input gates, forget gates, and output gates,
respectively; cgt is the cell state vector; W g , Ug and bg are
model parameters learnt during training; σ is the sigmoid
function. In order to capture both the forward and backward
correlations of a SMILES string, we used a bidirectional
LSTM (BLSTM). A BLSTM processes the input sequences
in both directions, so they have context not only from the
past but also from the future.

−→
hgt and

←−
hgt represent the forward



and backward processes, respectively. The hidden states of a
BLSTM are defined as: hgt = {

←−
hgt ,
−→
hgt }.

The encoder learns a representation of both the atoms and
edges, and can be formalized as Encodeg = f(We ·xgt , h

g
t−1).

Note that the input atom representation has multiple view.
In the Seq2Seq model, we use separate sets of weights for
different views. And for edge representation, the each edge
is represented by a singe vector, so only one set of weights
are adopted in the Seq2Seq model. The decoder predicts the
probability of observing an outcome ŷ = {ŷ1, ..., ŷM}:

P (ŷ) = ΠM
i=0p(ŷi|{ŷ1, ..., ŷi−1}). (6)

C. Luong’s Attention Mechanism

Observe that the edge attention and node attention are
calculated separately, and both the results are concatenated
and fed to the decoder. Similar to Seq2Seq model, we also
adopt Luong’s Attention Mechanism where the context vector
is computed by the attention factor:

αgit =
exp(sgi ·W g

α ·H
g
t )∑T

t=0 exp(sgi ·W
g
α ·Hg

t )

cgi =

T∑
t=0

αgit ·H
g
t , and ci = [cai |cei ].

(7)

The attention factor is defined as the concatenation of the two
views and is used to generate the attention vector through a
single layer neural network:

ai = tanh(Wb · [cai |cei ]). (8)

This layer learns the function choosing from the important
attention of atoms or bonds. Note that both Wα and Wb are
learned weights. Then the attention factor can be used to
compute the probability for a particular output distribution:

p(yi|{y1, ..., yi−1}, ai) = softmax(Wp · [ai]). (9)

D. Multi-view Attention Mechanism

The attention factor in equation 7 can only capture the
single view properties. However, EAGCN provides much more
meaningful multi-view information, which should be utilized
carefully. In this subsection, we introduce self attention to
model correlation between different views inside each atom
or edge and mutual attention to combine information between
atoms and edges.

1) Self Attention Inside each Atom or Edge: Self attention
in each atom/edge is important in chemical reaction process
since the combination of different view may result in different
chemical properties. For example, a carbon atom in a ring will
perform very differently with a carbon atom in a triple bond.
So the correlation between views will have significant impact
on the attention score.

To aggregate multiple views for a single atom or single
edge, we use trainable correlation matrix to act as correlation
coefficiencies, which will be further utilized to calculate the
final attention score in Seq2Seq model. We adopt two way

attention [23] to model the such correlation. The inter Atom
attention is defined as:

σintere = tanh((He)TW eHe), (10)

and
Σa = tanh((Ha)TW aHa), (11)

Where We and Wa are weight correlation matrices to be
learned. Note that W a and We have the same dimension
RK × RK but the output will be different because of the
difference of atom representation and edge representation.
σintere is a scalar while σa ∈ RF ′

k × RF ′
k .

To reduce the dimension of Σa, instead of using compu-
tationally intensive method as in [24], we use light weight
aggregation method similar to [25] to squeeze the scoring
matrix to a scalar. Here, we pass the atom attentions to a
single layer neural network. Different from [25], we take
the operations of both max pooling and average pooling to
generate the self attention scores. The max pooling is to find
the view that have the maximum impact while average pooling
is to average the impact from all the views.

σ0
a = σ(WaΣa), σ1

a = softmax(max(Σa))

σ2
a = softmax(max(ΣTa )), σ3

a = softmax(ave(Σa))

σ4
a = softmax(ave(ΣTa )),

(12)

where g ∈ a, e, max and ave are column-wise operations.
The final score is calculated as:

σfinal = softmax(

4∑
0

λiσ
i), (13)

where λi are hyperparameters of those five kind of attentions.
2) Mutual Atom-Edge Attention: Mutual Atom-Edge atten-

tion is to incorporate correlation between atom views and
edge views. Such correlation is critical in chemical reaction
since the strength of a edge can be significantly impacted by
another atom. So the atom-edge interaction must be carefully
considered. Due to the dimension mismatch between atom and
edge representation, direct combination is not achievable. The
attention score is defined as:

σcross = tanh((He)TWeaf(Ha)), (14)

where Wea is a RK ×RK correlation matrix and f(Ha) is a
squeezing function that reduce the dimension of Ha to RF ′

k ×
1. Similar to equation 12 typical choices of f can be max-
pooling, average-pooling, or a simple matrix multiplication.
The calculation is the same as is described in previous section.

E. Output Validation

In sequence generation RNN, the output length and correct-
ness are out of control since the search space of the sampling
process of the decoder is unbounded. We use several validation
techniques to bound the output search space. The space of a
molecule is defined as M with size of N . The input space is
a subspace of a molecule IK ∈ M , where K is the length



of an input atom. The output space is OL, which is different
from the input since the length of the output is different from
that of the reactants. Given two input molecules in IK1×K2 ,
we can further limit the output space to OL ∈ IK1×K2 , and
L ≤ K1 +K2. During the decoder sampling process, we can
reduce the search space for ŷt at step t as:

Ot ∈ IK1×K2/Ot−1. (15)

To further validate the output, we use RDKit to check
the correctness during the beam search process. The output
distribution can be further formalized as:

p(yi|{y1, ..., yi−1}, ci) = vrd · softmax(Wp · ai) (16)

where vrd is the output of the RDkit validation check. Note
that vrd is a probability indicating if the molecule is valid.
The lower this probability, the less likely that an atom will be
chosen in the beam search ranking process. However, there is
still a chance that a new molecule that has never been seen
before will be selected as the output.

IV. EMPIRICAL EVALUATION

In this section, we evaluate our pipeline on two commonly
evaluated datasets, Lowe’s grants dataset and Jin’s USPTO
dataset. We compare our pipeline with WLDN [12] and pure
Seq2Seq [10] models. To prove the efficiency, we also compare
it with different preprocessing steps: (1) One Hot Embedding,
(2) GCN with atom embedding, (3) MPNN with both atom and
edge embedding, and (4) EAGCN with both atom and edge
embeddings. To verify the effectiveness of multi-view learning,
we evaluate different combinations of views in EAGCN and
discuss the insights gained from experiments.

A. Experimental Setup

The node features and edge attributes are extracted using
the RDKit. We converted SMILES into “.mol” format, which
contains the molecular structure information used to build
the molecular graph. The input for EAGCN is the molecular
graph and then mapped back to SMILES strings. In order
to apply a fixed-size representation, for the atom pair types
whose frequencies are lower than the threshold, we will set
the same attention weight for them in the dictionary. Ten
independent runs with different random seeds are performed
and the averages are reported. We use the adaptive moment
(ADAM) optimization algorithm for training the model.

The training and evaluation processes are as follows: 1) Pre-
train EAGCN, GCN, and MPNN using QM-9 dataset. The
dataset contains 134K molecules made up of CHONF. Note
that the number of heavy atoms in the chemical reaction is
larger than that in QM9. After pretraining, 2) Connect the
output layer of representation learning network to decocer
model. The RNN scan the output of the representation learning
model based on the order of SMILES in both directions and
learn the hidden state. During this procedure, Some edge
representations are ignored since SMILES cannot describe all
the graph geometric information. However, by employing two

TABLE I
EDGE ATTRIBUTES USED IN MOLECULAR GRAPHS

Attribute Description
Atom Pair Type Defined by the type of the atoms that a bond

connects (e.g., C-C, C-O).
Atom Pair
Distance

Discrete distances through Gaussian basis
function.

Bond Order Bond order (single bond, aromatic bond, dou-
ble bond and triple bond).

Aromaticity Is aromatic.
Conjugation Is conjugated.
Ring Status Is in a ring.

EAGCN layers, the information of the one-hop neighbors is
included in each edge, so that it covers all the uncovered
edges when traversing SMILES. 3) All the networks are then
connected as proposed and jointly trained. 4) The final model
is tested 10 times. We pick the network with the highest
accuracy to be the final candidate. We take the output of
the candidate representation learning model and feed it to
the Bi-modal decoder network, train the decoder network 10
times and output the average accuracy. 5) The beam search
hyperparameter can be limited to 6 thanks to the output
validation process. 6) We adopt the full-sequence accuracy,
where a test prediction is considered correct only if all the
tokens are identical to the ground truth. The models have been
implemented using PyTorch and run on Ubuntu Linux 16.04
with NVIDIA Titan RTX Graphics Processing Units.

B. Edge Attributes

To employ full information of the chemical bond, we
include six different attributes, as shown in Table I. Atom
pair type reflects the basic bond energy defined by the atoms.
Atom pair distance, combined with atom pairs, describes the
atom-wise force. Bond order reflects the general bond strength.
Aromaticity, Conjugation and Ring Status reflect the special
structure which may not be revealed by the SMILES string.

C. Datasets

As mentioned in [10], all the openly available chemical
reaction datasets were derived from the patented text-mining
work of Daniel M. Lowe. What makes the dataset particularly
interesting is that the quality and noise correspond well to
the data a chemical company might own. The granted patent
is made of 1,808,938 reactions, which are described using
SMILES. The dataset is incomplete and contains noise and
errors. It is not suitable for direct training. To evaluate our
model and compare it with the existing models, we use two
reduced pre-processed datasets as reported in [10] and [12].

D. Attention Factor

To show the effectiveness of the graph model, we compare
the attention factor between the final model and all the
candidates. Note that the correctness of the attention factor in
the decoder model is important and to some extent dominates
the correctness of the final output. In this section, we show
that the attention factor is predicted correctly when with edge
presentation input and with the correct attention on edges, the



TABLE II
ACCURACY RESULTS ON TWO COMMONLY USED DATASETS

Jin’s USPTO Lowe’s
Model top-1 top-2 top-3 top-5 top-1 top-2 top-3
WLDN 74.0 N/A 86.7 89.5 N/A N/A N/A
Seq2Seq 80.3 84.7 86.2 87.5 65.4 71.8 74.1
GCN+Seq2Seq 80.8 85.6 86.4 87.9 65.9 72.3 75.8
MPNN /o edge+Seq2Seq 80.7 85.9 86.5 87.7 66.3 72.1 76.1
MPNN /w edge+Seq2Seq 86.8 90.0 92.2 93.3 74.3 80.1 83.4
MPNN /w edge+Seq2Seq+intra attention 87.5 90.9 93.1 94.5 75.2 80.8 84.3
EAGCN+Seq2Seq+single att 88.1 92.3 94.4 95.6 76.2 81.2 84.8
EAGCN+Seq2Seq+multiview att 89.7 93.8 96.0 96.7 78.8 83.1 87.4

product of the chemical reaction is then correctly induced. The
auxiliary notations or the connectivity notations(such as ”(” or
”)”) are ignored in the illustration but is actually included in
the original model. From figure IV-D, we see that without
edge embedding (GCN and MPNN), the reaction center is
not predicted with high confidence since they focus on the
irrelevant parts of the input. Also observe that for EAGCN
without edge embedding, even though the node attention
provides some information of the edges to the nodes, the
attention of the decoder is not correctly focused. With edge
information provided, the model pay some attention to the
reaction center and are more focused compared to models
without edge attention. Here more focus means less distraction
by other atoms when building the new connection of the true
reaction center. Moreover, multi-view achieve the most focus
and accurate attention then all the others.

Fig. 3. Visualization for attention factor. Top left: GCN+Seq2Seq,
Top right: MPNN+Seq2Seq, Bottom left: EAGCN+Seq2Seq, Bottom
right: EAGCN+Seq2Seq+Multiview attention

Another phenomenon is that when selecting the output atom,
the attention is paid on not only the atom from the input
but also the edge representation after the previous atom and
before the next candidate atom, indicating that the decoder
understands the mechanism on locating the reaction center.

E. Comparison Results

We first show the results for Jin’s pre-processed dataset
in Table II in columns 2 to 5. The results are categorized
into two groups. Group 1 includes the preprocessing without
edge embedding, i.e., GCN and MPNN. Group 2 includes
MPNN and EAGCN with edge embedding. Note that since
Jin’s dataset is well cleaned with less noise, all the models can
achieve a high accuracy. Models with edge embedding achieve
state-of-the-art prediction accuracy. In this Table, we also show
the results on Lowe’s dataset in columns 6 to 8. As we see,
the average accuracy of with edge embedding is significantly
better than only atom embedding. This indicates that atom
representation alone is not enough to describe the property
of the bond and thus not helpful to find the reaction center.
With edge embedding, both atom and edge representations are
output and being considered in the inference attention step,
thus the overall prediction accuracy is improved.

Specifically, EAGCN with edge embedding slightly outper-
forms MPNN in that the multi-view model learns more infor-
mation from the graph than directly from message passing. As
is shown in table II, edge embedding models outperform the
state-of-the-art on both datasets, and the improvement margin
of Lowe’s dataset is higher than Jin’s dataset. This shows that
the model can handle complex and noisy datasets.

Moreover, we compare the results with single attention and
multi-view attention on MPNN and EAGCN. In MPNN, we
use intra atom and edge attention only. Both model with multi-
view attention perform a clear improvement in all cases. And
the improvement in EAGCN is higher than the improvement in
MPNN, indicating the effectiveness of considering both inter
and intra correlations.

TABLE III
RESULTS OF DIFFERENT VIEWS OF EAGCN.

Jin’s USPTO Lowe’s
Model top-1 top-3 top-5 top-1 top-2 top-3
View1 82.5 87.6 89.7 71.2 78.3 81.3
View2 80.1 89.8 91.3 70.2 77.7 80.9
View3 78.2 82.5 83.3 62.8 69.6.1 72.6
View4 86.7 93.7 94.8 75.1 80.9 84.1
All views 88.1 94.4 95.6 76.2 81.2 84.8



F. Multi-view Analysis

We further run experiments showing the effectiveness of
multi-view learning. We modify the EAGCN model with view
of 1) atom pair only, 2) atom distance only, 3) bond type only,
4) atom pair, distance, and bond order, and 5) all views. We
show the results in Table III. All the single view representation
learning methods failed to achieve a high accuracy. Moreover,
the view with only bond type performs significantly worse
than the other views. On the other hand, the single view
with only atom pair outperforms other single view models.
When comparing view4 (atom pair, distance, and bond order)
with full views model, the accuracy drop is moderate. Views
of aromaticity, conjugation, and ring status contain partial
structural information with a moderately significant impact on
the outcome prediction.

V. CONCLUSIONS: SIGNIFICANCE AND IMPACT

In this paper we address an important problem in Materials
Genomics, i.e., that of predicting the outcomes of chemical
reactions. To encode molecules with full information, we
employ different graph embedding methods: graph convolu-
tion, message passing network(MPNN) and multi-view edge
attention graph convolution(EAGCN) model to learn both node
and edge representations. To further employ the multi-view
embedding information, we propose self and mutual attention
method working with MPNN and EAGCN. Compared with
the pure Seq2Seq model, our model includes the edge infor-
mation which is important in predicting the reaction centers.
Compared with single attention models, the attention factor of
our method incorporate correlations among different aspects,
providing higher confidence attention scores. Empirical results
reveal that the end to end pipeline achieves a superior accuracy
compared to all the algorithms that have been published in
the literature for the same problem. We also believe that the
paradigm we have introduced in this paper is of independent
interest in the machine learning domain in general.
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