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ABSTRACT
Automatic extraction of breast mass in mammogram (MG) images
is a challenging task due to the varying sizes, shapes, and textures
of masses. Moreover, the density of MGs makes mass detection
very challenging since masses can be hidden in dense MGs. In this
paper, we propose a residual deep learning (DL) system for mass
segmentation and classification in mammography. The overall pro-
posed system consists of two cascaded parts: 1) a residual attention
U-Net model (RU-Net) to precisely segment mass lesions in MG
images, followed by 2) a ResNet classifier to classify the detected
binary segmented lesions into benign or malignant. The proposed
semantic based CNN model, RU-Net, has the basic architecture of
the U-Net model, which extracts contextual information combining
low-level feature with high-level ones. We have modified the U-Net
structure by adding residual attention modules in order to preserve
the spatial and context information, help the network have deeper
architecture, and handles the gradient vanishing problem. We com-
pared the performance of the proposed RU-Net model with those of
state-of-the-art two semantic segmentation models, and two object
detectors using public databases. We also examined the effect of
the breast density on the accuracy of localizing and segmenting the
breast masses. Our proposed model shows superior performance
compared to the other DL methods in detecting and segmenting
masses, especially for heterogeneously dense and dense MG images,
∗Dina Abdelhafiz has 2nd affiliation in the Informatics Research Institute (IRI), City of
Scientific Research and Technological Applications (SRTA-City), Egypt.
†Corresponding author.
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in terms of intersection over union (IOU) and the Dice index coef-
ficient (DI). Moreover, our results show that the cascaded ResNet
model, trained using binary-scale images, classify the masses to
benign or malignant with higher accuracy compared to the ResNet
model that is trained on gray-scale images.

CCS CONCEPTS
• Theory of computation → Machine learning theory; • Ap-
plied computing → Imaging; Bioinformatics.

KEYWORDS
Mammograms (MGs); convolutional neural networks (CNN); breast
cancer; transfer learning (TL); deep learning (DL); computer aided
detection (CAD); semantic segmentation; classification; ground
truth maps (GTMs); yolo; faster r-cnn; u-net; res-net
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1 INTRODUCTION
Mammograms (MGs) have contributed significantly to the reduc-
tion of the breast cancer mortality rate through early detection of
cancer. Recent advances in computational technologies, and signifi-
cant progress in deep learning (DL) [20, 27] and image processing
techniques [24] have opened up unprecedented opportunities to
develop models for providing an objective view to radiologists with
higher accuracy [1, 4, 39]. With advances in detection and local-
ization methods in DL techniques for medical imaging [21], few
studies have proposed DL models to localize mass lesions in MG
images [3, 5, 11]. Studies in [1, 4, 11] show that convolution neural
networks (CNNs) achieve higher detection accuracy in locating
masses in MGs compared to traditional Computer-Aided Detection
(CAD) models. Various approaches have been proposed to further
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improve the accuracy of deep CNNs in detecting and localizing
breast abnormalities [1, 4, 39]. Further, techniques such as stochas-
tic depth [18], batch normalization (BN) [19], transfer learning (TL)
[25], data augmentation (Aug.) [20], and dropout [33] have been
used in various researches for avoiding network overfitting and
regularization purposes. Despite the recent advances in the struc-
ture of DL models, detection of masses in MG images has remained
a challenging problem due to the following reasons: 1) existence of
some masses in the pectoral muscle area, 2) hidden masses under
the dense breast tissues, and 3) varying sizes, shapes, and texture
of masses [1, 4, 39].

In this study, we propose a residual DL system for mass segmen-
tation and classification in mammography. The overall proposed
system consists of two cascaded parts: 1) a residual attention U-Net
model (RU-Net) to precisely segmentmass lesions inMG images, fol-
lowed by 2) a cascaded ResNet [16] classifier to classify the detected
binary segmented lesions into benign or malignant. The proposed
semantic based CNN model, RU-Net, has the basic architecture
of the U-Net model [32], which extracts contextual information
combining low-level feature with high-level ones. In our previous
work, we have shown that the basic U-Net model can be used for
more precise and efficient mass segmentation in MG images [3]. To
further improve the performance of the basic U-Net model for mass
segmentation, we have modified its structure by adding residual at-
tention modules. These modules generate attention-aware features
that change adaptively as the network goes deep in layers. The
residual modules [16] resolve the problem of vanishing gradients
using identity skip-connections thus facilitating the training of the
proposed model. The proposed RU-Net use long and short skip
connections to produce precise and detailed segmentation maps.
Besides adding the stacked residual attention modules, we used
augmented data-set in the training process to improve the accuracy
of the RU-Net model.

To evaluate the performance of the proposed model, we com-
pared the performance of the proposed RU-Net model with those
of the basic U-Net model [32] and the vanilla U-Net model [3].
The performance of the models is evaluated in terms of dice index
coefficient (DI), intersection over union (IOU) and inference test
time. We also constructed bounding boxes (BBs) surrounding the
segmented lesions to compare the output BBs produced by the
proposed RU-Net with the BBs produced by the state-of-the-art
Faster R-CNN and Yolo object detectors proposed in [6, 31]. We
used publicly available data-sets, CBIS-DDSM [17], and BCDR-D01
[22] to train the proposed RU-Net model and the models we used
for performance comparison proposed in [3, 6, 31, 32], and we
tested the models using the INbreast data-set [10]. These data-sets
include mass lesions of different sizes, shapes, and margins. We
also examined the effect of the breast density on the accuracy of
localizing and segmenting the breast masses. We tested the per-
formance of our proposed RU-Net and the models in [3, 6, 31, 32]
separately on each breast density category based on the BI-RADS
code: fatty, scattered, heterogeneously dense and dense breasts, in
terms of the Dice index coefficient (DI) and the intersection over in-
dex (IOU). RU-Net is implemented in Matlab R2018b and is available
at: https://github.com/NabaviLab/RU-Net.

2 RELATEDWORK
Despite the huge success of DL methods in classifying MG images
into normal, benign and malignant [1, 4, 39], the use of CNNs for
segmentation and localization of lesions in MG images are not
thoroughly investigated. The region-based CNN (R-CNN) models
and its faster variants, Fast R-CNN, Faster R-CNN, and Mask R-
CNN [14, 15, 30] for object detection have recently been used for
mass localization tasks in mammography [29, 31, 34]. Yolo (You
Only Look Once) that is an effective and efficient object detection
DL model has been used for mass localization [5–7].

Anchor boxes are widely adopted in state-of-the-art DL object
detection models (e.g. Faster R-CNN and Yolo V2). The main draw-
back of these models is that if anchor boxes are not chosen correctly,
the model will struggle in detecting small or irregular objects. In the
Yolo model, the anchor shapes are obtained by k-means clustering
on the sizes of the ground truth BBs. In Faster R-CNN, the anchor
shapes are of 3 scales and of 3 aspect ratios, yielding 9 different
anchors at each output sliding window position. The aspect ratios
used in the case of detecting general objects such as pedestrian, car,
text is different from the aspect ratios used in detecting lesions in
MGs, or in medical images in general. In these models, the anchor
shape has to be manually modified according to the ground-truth
data-set to improve the detection accuracy and to detect small mass
lesions. The Faster R-CNN [30] and Yolo [28] models need to pre-
define the anchor box's shapes and to fix its size during training,
which is sub-optimal since it ignores the augmented data distri-
bution in training. Inappropriate anchor boxes could degrade the
performance of the detector in terms of accuracy [37] and detecting
small lesions.

Recently, the fully convolutional network (FCN) and its variant
improved models such as U-Net [32] and SegNet [8], have yielded
outstanding results for semantic segmentation of biomedical images
and a promising results for segmenting lesions in MG images [3, 38].
In these studies [5, 7], in order to enhance the detection performance
of the used Yolo model in term of precision in detecting masses,
the authors first, used a cascaded semantic CNN to segment the
detected masses. Then, they used another cascaded CNN trained on
gray-scale MG images to classify the segmented masses as either
benign or malignant [5, 7]. These cascaded models increase the
computation cost, however, provide better classification results.

Several studies [11, 36] have proposed a patch-based CNN to
detect lesions. The drawback of the patch-based approaches is that
the input patches came from non-overlapping areas, which makes
it difficult to precisely localize masses. Moreover, the size of the
input patches is very small that produces difficulty in differentiating
normal tissues from abnormal ones after detection.

In this study, we propose a residual DL system to segment and
classify lesions in MG images without the need of any cascaded
detectors. To date, only a few attempts based on DL have been pre-
sented for semantic segmentation of mass lesions in mammography
[3, 38].

3 MATERIAL AND METHODS
3.1 Data-sets
We trained our proposed model on two data-sets, DDSM [17] and
BCDR-01 [22], and tested it on the INbreast data-set [10]. CBIS-
DDSM is a digitized screen-film mammography (SFM) data-set
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that is a subset of the DDSM data-set [17] with updated lesion
segmentation, and verified pathology. We used 2,734 images from
the CBIS-DDSM data-set that have mass lesions. BCDR-D01 [22] is
a screen film mammography (SFM) repository of 135 MG images.
INbreast [10] is public data-set for MGs which comprises fully field
digital mammography (FFDM) MG images. It has 107 MGs that are
annotated for masses. All images containing masses have associated
pixel-level boundary of the mass lesions annotated by experienced
radiologists. To have ground truth for evaluating object detection
methods, we generated ground truth BBs for the masses based on
minimum and maximum points values of x and y coordinates of the
mass’ contours, which indicate the locations of masses. Each MG
image has been annotated based on their density derived from the
American College of Radiology’s (ACR) Breast Imaging Reporting
and Data System (BI-RADS) [9]. For each MG image, its density
in ACR standard scale is given as one of these categories: class A:
fatty, class B: scattered, class C: heterogeneous dense, and class D:
dense [1, 4, 9]. We grouped the BI-RADSmulti-class assessment into
benign and malignant classes. In this study, we categorized 1,133
MG images with BI-RADS ∈ {2, 3} as benign, and 1,843 MG images
with BI-RADS ∈ {4, 5, 6} as malignant. Distribution of density for
each BI-RADS class is presented in Table 1. In total, we used 2,976
MG images to conduct our experiments.

Table 1: Distribution of breast density in each BI-RADS class
in the publicly available data-sets used in our study.

Purpose Data-set BI-RADS Class Total

A B C D All

Training DDSM Benign 154 412 228 224 1,018
Training BCDR-D01 Benign 34 16 23 7 80
Test INbreast Benign 12 4 13 6 35

Training DDSM Malignant 219 693 513 291 1,716
Training BCDR-D01 Malignant 16 15 22 2 55
Test INbreast Malignant 30 32 8 2 72

3.2 Data Pre-processing
We first detect the breast boundary for removing a big portion of
the black background [13] from the training images. After that,
we employ the contrast limited adaptive histogram equalization
(CLAHE) [26] to enhance the contrast of theMG images. In previous
works [1–4], we have shown that the CLAHE filter performs better
compared to other commonly used filters for CNN based analysis
for MGs. We generated ground truth maps (GTMs) for the masses
using the associated pixel-level boundary of the mass lesions given
by the data-sets. All pixels in the GTM are labeled as belonging
to the background (0) or breast lesion (255) classes. All full MGs
images and it’s corresponding GTMs are re-sized to 640×640. To
deal with the small training data-set and avoiding overfitting our
model, we applied data augmentation to the training MG images
and it’s corresponding GTMs by image rotation by (-45, 45) degrees,
translation up and down by (-10%, 10%), scaling in and out by 0.2,
and left-right flips.

3.3 Proposed RU-Net
U-Net is a popular end-to-end encoder-decoder network for se-
mantic segmentation that is originally invented for bio-medical
image segmentation [32]. U-Net consists of a contracting path to
capture features and an asymmetric expanding path that enables
precise localization and segmentation of pixels. This architecture
has a U-shaped skipping structure that connects the high-resolution
features from the contracting path to the up-sampled outputs of
expanding path. Inspired by the residual attention mechanism pro-
posed in [35], we built the proposed RU-Net model by stacking
residual attention modules to the basic U-Net architecture. We use
the residual blocks with the identity connections instead of the
regular convolution layers in the U-Net architecture in order to
preserve the spatial and context information, help the network have
deeper architecture, and handles the gradient vanishing problem.
The residual blocks directly propagate features from its early con-
volution to its late convolution and improve the performance of the
proposed model consequently. In order to address the problem of
detecting small lesions, the proposed RU-Net model uses residual
attention blocks to increase the resolution for better pixel-level
prediction (Table 2). The residual attention module consists of

Table 2: Architecture of the proposed RU-Net. The symbol ↓
means that this level in the encoder path consists of a con-
volution block, a residual block, a convolution block, and a
down-sampling layer. The symbol ↑means that this level in
the decoder path consists of a convolution block, a residual
block, a convolution block, and a down-sampling layer. The
symbol □ means that this level consists of a bridge of con-
volution block, a residual block, and another convolution
block.

Layer name Path Layers
inside

Output
resolution

Output
width

Input Encoder ↓ 640×640 1
Level 1 Encoder ↓ 640×640 64
Level 2 Encoder ↓ 320×320 128
Level 3 Encoder ↓ 160×160 256
Level 4 Encoder ↓ 80×80 512

Bridge □ 40×40 1024
Level 4 Decoder ↑ 80×80 512
Level 3 Decoder ↑ 160×160 256
Level 2 Decoder ↑ 320×320 128
Level 1 Decoder ↑ 640×640 64
Classifier Decoder ↑ 640×640 1

a soft mask branch and trunk branch [35] (Fig. 1). The attention
residual mechanism can keep the flow of original feature infor-
mation through the trunk branch using the identity mapping and
construct attention to mass lesions features using the soft mask
branch. Each trunk branch is connected to its own soft mask branch
(Fig. 1). The proposed RU-Net network consists of multiple levels,
and in each level, the network capture features with different reso-
lutions. As shown in Fig. 2a, the encoder in the soft mask branch at
each level consists of a cascade of a down-sampling layer, a convo-
lution (Conv.) block, a residual block, another convolution block,
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Figure 1: The architecture of the proposed RU-Net. The nested long residual skip connections connect the encoder and decoder
paths at the same level, while each intermediate residual block contains a short residual skip connection within the same path
to increase the depth of the proposed RU-Net model.

(a) Proposed RU-Net. (b) Vanilla U-Net.

Figure 2: Difference between the proposed RU-Net (a) and
the vanilla U-Net (b). The proposed RU-Net model is a fully
residual model that has long and short skip connections.

(a) A residual block. (b) A convolution block.

Figure 3: Difference between a residual block (a) and convo-
lution block (b).

and a skip connection of residual blocks that is connected to the
corresponding level in the decoder path.

The attention module keeps useful information by applying
element-wise product between feature coming from the truck branch
and the output of the soft mask branch. However, repeated element-
wise product across layers will lead to degradation of both useful
and useless information. To avoid this degradation in information
across layers, an element-wise sum is then performed between the
output of the element-wise product and output from the residual
blocks in the trunk branch. This element-wise summation relieves
the feature attenuation happened during the element-wise prod-
uct process by using long connections (identical mapping), which
enhances the feature contrast and improve the discrimination of
the features. The output from the element-wise summation is then
forwarded to the decoder path, which at each level consists of a cas-
cade of a convolution block, a residual block, another convolution
layer, and finally an up-sampling deconvolution layer. The final
feature output of every residual block is the element-wise summa-
tions of the output of three cascaded convolution blocks with the
short identity map (Fig. 3a). Each convolution block consists of a

BN layer and an activation ReLU layer and a regular convolution
layer (Fig. 3b). The down-sampling (max-pooling) layers exist be-
tween the levels in the encoding path to perform down-sampling
in the feature maps. The deconvolution layers exist between levels
in the decoding path to up-sample the input feature maps from
the decoder level and then concatenate them using a pixel-wise
addition with the feature maps coming from the encoding path by
the long skip connections.

Besides the long skip connections used between each level in the
encoder-decoder path, short connections are used in the residual
blocks for a direct connection between layers in the same levels.
Using short and long connections help the flow of information
within and across levels in the RU-Net architecture to generate
richer information hierarchy (Fig. 1). The trunk branch in each
level use its long skip connection as input to a cascade of two
residual blocks (Fig. 1). The output of the truck branch is then
element-wise summed with the up-sampling feature maps from
the corresponding level in the decoder path. The final segmented
binary map is obtained by passing the result through a pixel-wise
Sofmax classifier after the last convolution layer.

The original U-Net model uses concatenation [32] of feature
maps between the encoder and decoder path. In this work, the
concatenation is replaced by element-wise summation (Fig. 2a).
Element-wise summation directly adds the local details of the fea-
ture maps from the encoder to the global details of the feature
maps from the decoder at certain stage. Thus, the residual attention
modules generate attention-aware features that change adaptively
as the network goes deep in layers. The novelty of this work is
that the residual attention modules are added to the vanilla U-Net
model [3], as in Figs. 2a and 2b, to capture multi-scale information
and integrate low-level features with high-level features for precise
semantic segmentation of the input MG images. By using the resid-
ual attention modules, our RU-Net can improve the performance
significantly (Fig. 1). We investigated employing different number
of residual attention blocks, and different number of layers. We
observed that adding more than two residual blocks and four lay-
ers does not significantly improve the model’s performance; but it
significantly increases the training time. Therefore we considered
the architecture shown in Table 2 for the proposed RU-Net model.

Session 16: Bioimages & Functional Annotation ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA.

478



3.4 Cascaded Residual Classifier
The classification of benign and malignant mass lesions is one of the
most challenging and also the most significant processes in examin-
ing MG images as it helps to reduce false positives (FPs) and classify
the lesions at their early stage. Almost all the DL methods proposed
for classifying MG images use the gray-scale images [4]. We used
images of 224×224 pixels to train our DL model for classification of
lesions in MG images into benign or malignant. The size 224×224
are used excessively for training DL CNNs [1, 4]. Classifying lesions
into benign or malignant using gray-scale images is challenging
because in some MG images, gray levels of the masses are mixed
with surrounding tissues resulting in unclear lesion boundary. The
augmented training binary-scale GTMs have clear mass boundaries
and margins. Moreover, heterogeneously dense and dense breast
tissues hide the mass lesions. These challenges decrease the accu-
racy of DL classifiers. In this paper, to address these challenges, we
propose to use a cascaded ResNet CNN [16] trained on black and
white images to classify the segmented binary maps (output of the
semantic segmentation) into benign or malignant images without
the need of the traditional hand-crafted features (Fig. 4).

Figure 4: Block diagram of the proposed cascaded modules
for semantic segmentation and classification of mass le-
sions.

3.5 Training Configurations
For training the segmentation models, we adopted the Dice coef-
ficient (DC) loss [23] as the objective function to train the model.
The DC loss function is minimized using Adam optimizer with a
decreasing learning rate (LR) initialized to 10-2 and momentum
of 0.9. The LR is reduced every 25 epochs by a factor of 0.1. We
trained the models for 150 epochs. We trained the models using
mini-batches of size 4. To manage imbalance data, we introduced
class weights into the DC loss function.

We utilized the ResNet CNN model [16] in this study for classifi-
cation of masses into benign or malignant. In our experiment, the
ResNet model [16] is trained using a Stochastic Gradient Descent
with a gamma of 0.1, and a weight-decay of 10-5. We trained the
models using mini-batches of size 16. We used initial LR of 10-3,
which is reduced every 25 epochs by a factor of 0.1. A dropout of
0.5 is used to accelerate the training process and prevent overfitting.
For training the classification models, we used GTMs of the DDSM
and BCDR-01 data-sets to train the model into benign or malignant
images. We trained the models with 1,098 benign MG images, and
1,771 malignant MG images, respectively, as shown in Table 1. We

applied the same augmentation technique discussed in the Material
and Method Section to augment the binary GTMs images. We per-
formed data augmentation to alleviate the relatively small amount
of training data-set. To evaluate the performance of the ResNet
model for classification, we carried out 5-fold cross-validation tests
on the INbreast data-set (Table 1). The detected segmented binary
images that have IOU ≥ 0.4 with the GTMs are used to test the cas-
caded classifier. The detected segmented binary images are resized
to 224×224 pixels. We used a pre-trained Res-Net model trained on
natural images and then, fine-tune it with binary-scale GTMs by
modifying the last fully connected layers to fit our task of binary
classification. We also fine-tuned the pre-trained ResNet model
using gray-scale MG images to classify MG images to benign or
malignant. Both ResNet models were trained under the same set-
tings and the same augmentation technique. We developed and
trained the DL algorithms using MATLAB version 2018b. Training
and testing the models were done on a Tesla K40m Nvidia graphics
processing unit.

3.6 Evaluation Metrics
To evaluate the performance of the DL models, the DI, also known
as the F1 score, and the IOU, also known as Jaccard index, met-
rics are used to compare the automated predicted maps with the
GTMs [12]. We mapped the class probabilities from the Softmax
output to discrete class labels and used them to compute the DI
and IOU metrics. As mentioned in the Related Work Section, most
of the lesion detection models provide BBs for an indication of a
region with an abnormality. In order to compare the performance
of the proposed RU-Net model with object detection models that
provides BBs, such as the Faster R-CNN and Yolo, we generated a
BB around every detected lesion or segment. We used the minimum
and the maximum points of x and y coordinates, which indicate the
locations of masses to generate the BBs. We considered a detected
segment (or a BB) as true positive (TP) if it overlaps with the ground
truth segment (or BB) by more than 40%. For each class, the pixel
accuracy metric is the ratio of correctly classified pixels to the total
number of pixels in that class, according to the GTMs. Mean pixel
accuracy is the mean accuracy of all classes in all images. We also
calculated the Boundary F1 contour matching score (BF-score) for
each image, which indicates how well the predicted boundary of
each class aligns with the true boundary. For each class, mean BF-
score shows the mean BF-score of all classes in all images, where
values near 1 show perfect boundary.

4 RESULTS AND DISCUSSIONS
4.1 Segmentation Results
We compared the performance of the original U-Net model [32],
vanilla U-Net [3], Faster R-CNN model [31], and Yolo model [6]
in detecting masses with that of our proposed model in terms of
mean DI, mean IOU, and the inference time in seconds per image.
Further details about the implementation of these models can be
found in the original article in [3, 6, 31, 32]. We trained the above
models using our augmented data-set and tested them using the
INbreast data-set [10]. The outputs of the Faster R-CNN and the
Yolo models are BBs per inference, as shown in Fig. 5 (h: i) in red.
These models provide multiple BBs. Overlapping BBs are merged
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Figure 5: A comparison between the original U-Net model, vanilla U-Net model, Faster R-CNN model, Yolo model, and the
proposed RU-Net model for detection of mass lesions in the INbreast database.

when the IOU between two boxes exceeds 0.5. The BB with the
highest confidence score among the set of overlapping inference
results is used as the representative BB with its confidence score.
Figure 5a shows the original FFDM MG images from the INbreast
data-set [10], where the green BBs show the location of lesions as
given by experienced radiologists, (b) shows the associated pixel-
level GTMs of the mass lesions, (c) shows the prediction of the
original U-Net model [32], (d) shows the prediction of the vanilla
U-Net model [3], (e) shows the prediction of the proposed RU-Net
model trained for 150 epochs without augmentation, (f) shows the
prediction of the proposed RU-Net model trained for 150 epochs on
the augmented data-set, (g) shows the output of the proposed best
RU-Net model trained for 200 epochs on the augmented data-set,
(h) shows the prediction of the Faster R-CNN model, and finally (i)
shows the prediction of the Yolo model. In Fig. 5g, we constructed
red BBs that surround the predicted masses using the proposed RU-
Net method in order to compare them with the Faster R-CNN and
Yolo detected BBs. The calculated DI and/or IOU for each prediction
is shown under each image in Fig. 5. The DI number shows the
Dice similarity coefficient between the current predicted map and
its corresponding GTM. DI takes a value in the range [0, 1], where 1
means that the segmentations in the two images is a perfect match.
We also labeled each MG image with the corresponding breast

density class (Fig. 5a). We added these labels in order to visually
find the effect of breast density on detection of masses inMGs across
different models. Classes A, B, C, and D are corresponding to fatty,
scattered, heterogeneously dense, and dense classes, respectively.

The proposed RU-Net outperforms the segmentation results of
the vanilla U-Net model [3] and the original U-Net model [32] in
terms of DI (Fig. 5). Its better performance is due to the superiority
of its network architecture. In the vanilla and original U-Net models,
the aggregations from the encoder to decoder consist of simple and
linear skip connections. As a result, the high-resolution features
aggregated to the decoder are relatively shallow. Even-thought the
vanilla U-Net model gives better results than the original U-Net in
terms of DI, the proposed RU-Net gives more precise segmentation
results. The false positive (FP) segments in some of the scattered
MG images in Fig. 5 (c: d) disappeared when using the proposed
RU-Net. Figure 5g shows high IOU values against the GTMs in
comparison to the IOU of the Faster R-CNN and the Yolo models,
Fig. 5 (h and i). However, Yolo provide better precise detection
than the Faster R-CNN model due to having adaptive anchor boxes
generated from the training data-set.

Detecting small lesions in MGs are very challenging, especially
if these small lesions exist in heterogeneously dense and dense
MG images. In order to address the problem of detecting small
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lesions, the proposed RU-Net model uses residual attention blocks
to increase resolution for better pixel-level prediction. By using
residual blocks, the network incorporates multi-scale spatial con-
text and captures more local and global context to predict a pre-
cise pixel-wise segmentation map of an input full MG image he
high-resolution features from the encoder are aggregated more for
obtaining stronger semantic information (Fig. 5 (e: g)). In order to
obtain more accurate segmentation results, we used large images
of 640×640 for training the network to provide much contextual
information. One of Yolo and Faster R-CNN known drawback is
having low detection accuracy on small objects. In Figs. 5, 6 and 7,
small lesions in MGs tend to have very low IOU compared to our
proposed RU-Net.

The proposed RU-Net model overcomes the limitation of the
state-of-the-art DL segmentation models in terms of reserving high-
resolution details by using the residual attention modules, which
help the model to detect masses in dense images. Figure 6 illustrates
the capability of the proposed RU-Net in detecting small masses in
heterogeneously dense and dense MG images. Moreover, masses
that existed over the pectoral muscle in dense areas are detected by
DI ≥0.65 (Fig. 6, first row). The proposed RU-Net model succeeds
to detect multiple lesions in the same breast as shown in Figs. 5, 6
and 7. Moreover, the proposed RU-Net can precisely detect multiple
lesions with higher DI and IOU in comparison to the other methods
(Fig. 7, first row).

The Faster R-CNN and the Yolo models are able to detect lesions
in the MG images, however, these models introduce more FPs (In
Fig. 7, second row). The Faster R-CNN and the Yolo models also
results in more false negatives (FNs), as shown in last row of Fig.7,
where they provide very low IOU that reaches 0.0 with FPs, while
the proposed RU-Net have IOU that ≥ 0.7. As we mentioned before,
the MG images of class C (heterogeneously dense) is very chal-
lenging where the dense areas of the breast make it harder to find
masses and obscure small masses. The proposed RU-Net succeed
to overcome these challenges (Figs. 5, 6 and 7). This is because the
segmentation process incorporates more multi-scale spatial context
and captures more local and global context to predict a precise
pixel-wise segmentation map of an input full MG image.

We divided the MG images in the INbreast data-set into 4 classes
accordingly to its breast density classes. The numbers of images in
classes A, B, C, D are 42, 36, 21, 8 images, respectively. We tested the
5 models individually on MG images in each class. Figure 8 shows
the histogram of the IOU for each class, with bin width of 0.1. The
RU-Net detected 100% fatty MG images with an IOU of range of
1: 0.9 (Fig. 8a). The vanilla U-Net follows the proposed network in
the detection of masses with 11.9% and 78.57% of fatty MG images
having an IOU in the range of 1: 0.9 and 0.9: 0.8, respectively, while
the Faster R-CNN and Yolo models show lower IOU in the range
of 1: 0.8 (Fig. 8b). In the case of the scattered MG images, the RU-
Net and the vanilla U-Net have nearly the same IOU histogram
distributions in the ranges 1: 0.8 (Fig. 8b). In the challenging cases,
the heterogeneously dense and dense MG images, the proposed
RU-Net is superior in detecting masses with high IOU in the range
of 1: 0.8 than other models (Figs. 8c and 8d). We noticed that the
Faster R-CNN have 43% of all density classes in the range of 0.5: 0.4.
The RU-Net detected 53.27%, 42.9%, 2.8% of masses in MG images
in all density classes with IOU in the range of 1: 0.9, 0.9: 0.8, 0.8:

0.7, respectively. While the vanilla U-Net detected 13.08%, 77.57%,
6.5% of masses in MG images in all density classes with IOU in the
range of 1: 0.9, 0.9: 0.8, 0.8: 0.7, respectively (Fig. 8). We noticed that
the masses that exist in the dense category in the INbreast data-set
are relatively larger in terms of size than the other masses in the
other categories. That is the reason that why the Faster R-CNN and
Yolo models have high IOU in that category (class D) than other
categories (classes A, B, C) (Fig. 8d).

In Table 3, the performance of the models under study is shown
for comparison between the tight detected BBs and the ground
truth BBs. Moreover, Table 3 shows a breakdown of the values of
the mean accuracy and mean IOU among different breast density
classes. The proposed RU-Net is superior in detecting masses than
other models under study with high mean accuracy and mean IOU.
The BF-score of the proposed RU-Netmethod is 0.981which exceeds
the other segmentation models under study. The values of DI and
IOU of the vanilla U-Net method is closer to that of the RU-Net
method compared to the original U-Net. The trained original U-Net
has a mean DI of 0.756, a mean IOU of 0.836, respectively.

Figure 6: Shows the detection of small lesions in the pectoral
muscle, small lesions in heterogeneous dense MG images,
and multiple small lesions.

Figure 7: A comparison between the proposed RU-Net and
the Faster R-CNN and Yolo models in terms of IOU.

Effect of augmentation. We investigated the effect of augmentation
in the performance of the proposed RU-Net method, shown in Fig. 5
(e: g). For example, the values of the DI of the augmented model, as
shown in (f and g), are higher than the ones of the trained model
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(a) Fatty MG images. (b) Scattered MG images.

(c) Heterogeneous dense MG images. (d) Dense MG images.

Figure 8: Histogram of the mean of IOU value for the test images in each MG breast density class.

Table 3: The performance of the vanilla U-Net, Faster R-CNN, Yolo, and the proposed RU-Net model.

Model Class A Class B Class C Class D

Mean
acc.

Mean
IOU

Mean
acc.

Mean
IOU

Mean
acc.

Mean
IOU

Mean
acc.

Mean
IOU

-Proposed RU-Net 0.997 0.981 0.929 0.937 0.995 0.930 0.940 0.928
-Vanilla U-Net 0.921 0.873 0.931 0.912 0.912 0.911 0.939 0.912
-Faster R-CNN 0.763 0.717 0.799 0.732 0.733 0.689 0.881 0.797
-Yolo 0.886 0.814 0.878 0.791 0.911 0.778 0.910 0.828

Table 4: The performance of the proposed RU-Net without
aug., vanilla U-Net with aug., original U-Net with aug., and
the proposed RU-Net model with aug.

Model Mean
acc.

Mean
IOU

Mean
BF-Score

Mean
Dice

-Proposed RU-Net, aug. 0.987 0.948 0.981 0.983
-Proposed RU-Net, no aug. 0.944 0.891 0.919 0.905
-Vanilla U-Net [3] 0.962 0.921 0.926 0.943
-Original U-Net [32] 0.843 0.836 0.789 0.756

without augmentation, as shown in Fig. 5 (e). The mean DI and the
IOU of the proposed RU-Net with augmentation are 0.983 and 0.948,
respectively, compared to 0.905 and 0.891 of the RU-Net model
without data-augmentation (Table 4). The BF-score improves from
0.919 to 0.981 in the case of the proposed augmented U-Net model.
Figure 5 (e: g), shows that the DI per image increases when the
proposed model is trained with the augmented mixed data-set.

Improvements of the proposed RU-Net model. The proposed model
yields an improvement of 4.24%, 30.02% in the DI and 2.93%, 13.39%
in the IOU, respectively, relative to that of the vanilla U-Net model
and the original U-Net (Table 4). The original U-net architecture
uses a long skip connection to concatenate the features maps. By
replacing the concatenation module with an addition module, the
RU-Net becomes a fully residual attention model.

Timing performance. To assess the runtime performance of these
methods, we measured the inference time per image taken by each
method to detect lesions in the test data-set. The mean inference
time per image of the proposed RU-Net method, Vanilla U-Net,
Original U-Net, Faster R-CNN, and Yolo models are 0.094, 0.087,
0.080, 0.439, 0.206 seconds, respectively. Its running time is compa-
rable (slower in fractions of milliseconds) with the Vanilla U-Net
and original U-Net, while outperforming the Faster R-CNN, and
Yolo models. We have to emphasize that for radiologists, an infer-
ence time of a fraction of second or even several seconds is not as
important as the accuracy of the given model.
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4.2 Classification Results
We evaluated the performance of the ResNet CNN model in terms
of area under the ROC curve (AUC) for the task of classifying the
segmented binary maps of breast masses as benign or malignant.
Our approach validates the usefulness of using binary GTMs for
training the ResNet model. As we mentioned in the Evaluation
Metrics subsection, the detected segmented binary images that
have IOU equals or exceeds 40% comparing with its GTMs are used
to test the cascaded classifier. The IOU range of 0.4: 0.6 is commonly
used with DL localization models [4, 5, 7]. However, the results
shown in Figs. 8a, 8b, 8c, and 8d demonstrate that our RU-Net
model accurately detects masses with IOU of value higher than 0.7,
which allows stable high performance in detecting lesions across
different breast density categories. The classification performance
is evaluated in terms of sensitivity (sen.), specificity (spe.), accuracy
(acc.), F1-score, and Matthews Correlation Coefficient (MCC) per
image. Tables 5 and 6 show the classification performance for the
ResNet models trained on augmented binary-scale MG maps and
augmented gray-scale MG images using 5-fold cross-validation.
Table 6 shows the confusion matrix of the classification task.

In our experiments, we used 224×224 pixels to train the ResNet,
because firstly, binary-scale lesions have less details and are well
distinguishable than gray-scale images. Secondly, with transfer
learning, data augmentation and the structure of the ResNet model
(residual blocks), better results are achieved to classify lesions of
different size and shapes (Tables 5 and 6). The ResNet model results
in a TPR/FPR of 0.94/0.03 when trained on binary-scale GTMs and a
TPR/FPR of 0.87/0.07 when trained on gray-scale images using the
INbreast test data-set (Table 6). The accuracy of the ResNet model
is 0.95 and 0.91 when trained with binary-scale GTMs images and
gray-scale images, respectively. It is observed that the ResNet model
that is fine-tuned with gray-scale GTMs performs better than the
one fine-tuned with gray-scale MGwith mean sen. (0.94), spe. (0.96),
acc. (0.95), AUC (0.98), F1-score (0.93), and MCC of (0.90) (Table 5).
In Table 6, 94.84% of benign cases and 96.08% of malignant cases
are correctly classified, while 3.92% and 5.16% are falsely classified
using the ResNet model trained on GTMs (Table 6). However, the
ResNet model that is fine-tuned using gray-scale images results
in 7.63% and 12.58% of miss classified benign cases and malignant
cases, respectively (Table 6).

Table 5: Comparison of the classification performance of
the ResNet model over 5-fold cross validation using data-set
trained on augmented binary-scale GTMs images or gray-
scale MG images.

Model Sen. Spe. Acc. AUC F1
score MCC

-Proposed ResNet,
binary-scale images0.94 0.96 0.95 0.98 0.93 0.90

-ResNet,
gray-scale images 0.87 0.92 0.91 0.96 0.86 0.79

The results of classification show the robustness of the proposed
ResNet CNN in minimizing the FP and FN rates (Tables 5 and 6).

The improved performance of the ResNet classifier of binary images
is due to the following reasons. First, the training GTMs have clear
boundaries and margins. Second, the high deep level of features
from proposed RU-net contributed to improving the performance
of the cascaded classifier by producing precise segmentation maps
that can be correctly classified as benign or malignant with high
accuracy (Tables 5 and 6). In our proposed cascaded Res-Net classi-
fier, the model classify the full detected map. The mean inference
time of the classification model is 0.033 seconds.

Table 6: Confusion matrix of the classification task via the
ResNet model trained on binary-scale or gray-scale MG im-
ages over 5-fold cross validation.

Model Actual
classes

Predicted
classes

Benign Malignant

-Proposed ResNet,
binary-scale images

Benign 0.94 0.05
Malignant 0.03 0.96

-ResNet,
gray-scale images

Benign 0.87 0.12
Malignant 0.07 0.92

5 CONCLUSIONS
We propose a novel network architecture, which consists of two
cascaded convolutional neural networks (CNNs). The first network
is a residual U-Net (RU-Net) for semantic segmentation of mass le-
sions in mammography (MG) images. The proposed RU-Net predict
a pixel-wise segmentation binary map of an input full MG image in
an efficient way due to the residual attention modules. The second
network, a ResNet classifier, is used for the task of binary shape
classification of the segmented binary-scale maps into benign or
malignant. We compared the performance of the proposed RU-Net
model with the performance of two DL semantic segmentation
models, U-Net and Vanilla U-Net, and two DL object detector mod-
els, YOLO and Faster R-CNN. We trained all the models with the
same data-sets. We observed that the data augmentation used to
increase the training data-set size enhances the performance of the
proposed model. We also observed that the proposed model has a
lower mean inference run time per image compared to the other
DL models. The proposed RU-Net model achieves a mean test pixel
accuracy of 0.98, mean Dice coefficient index (DI) of 0.98 and mean
intersection over union (IOU) of 0.94 that outperform those of the
other models. In summary, the proposed RU-Net model can be used
for precise segmentation of masses in MG images, especially for
the challenging heterogeneously dense and dense breast cases. The
proposed RU-Net is superior in detecting masses in dense MGs
with high IOU in the range of 0.8: 1 than other models. This is
because the segmentation process incorporates more multi-scale
spatial context and captures more local and global context to pre-
dict a precise pixel-wise segmentation map of an input full MG
image. The results show that the precise segmented masses can
be used for more accurately differentiating benign from malignant
lesions that is a very challenging task. The fine-tuned ResNet model
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with binary-scale GTMs performs better than the ResNet model
fine-tuned using gray-scale MG images in terms of mean sensitivity
(0.94), specificity (0.96), accuracy (0.95), AUC (0.98), F1-score (0.93),
and Matthews Correlation Coefficient (0.90). To conclude, using
transfer learning, introducing augmentation, and incorporating
multi-scale local and global context using the residual attention
modules into the original U-Net architecture result in a better per-
formance in detecting and segmenting masses which can be used
in more effective classification of masses.
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