
CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Explaining Graph Neural Networks with Mixed-Integer Programming

Anonymous CVPR submission

Paper ID 16514

Abstract

Graph Neural Networks (GNNs) have become a popu-001
lar tool for learning from graph-structured data. While002
they provide state-of-the-art graph learning performance,003
their lack of transparency hinders our ability to trust and004
understand them, ultimately limiting the areas where they005
can be applied. Many explanation methods exist to ex-006
plain individual predictions made by GNNs, but there are007
fewer ways to gain more general insight into the patterns008
they have been trained to identify. Most proposed meth-009
ods for model-level GNN explanations attempt to generate010
graphs that exemplify these patterns, but the discreteness011
of graphs and the nonlinearity of deep GNNs make finding012
such graphs difficult. In this paper, we formulate the search013
for an explanatory graph as a mixed-integer programming014
(MIP) problem, in which decision variables specify the ex-015
planation graph and the objective function represents the016
quality of the graph as an explanation for a GNN’s predic-017
tions of an entire class in the dataset. This approach, which018
we call MIPExplainer, allows us to directly optimize over019
the discrete input space and find globally optimal solutions020
with a minimal number of hyperparameters. MIPExplainer021
is able to find accurate explanations on both synthetic and022
real-world datasets, and outperforms existing methods for023
generating explanations for GNNs.024

1. Introduction025

Graph neural networks (GNNs), such as graph convolu-026
tional networks (GCN) [12], GraphSAGE [8], and graph027
attention networks (GAT) [26], provide a family of pow-028
erful tools for modelling graphs that learn from both the029
features contained in nodes and edges and the structure of030
the graph itself. While they have achieved state-of-the-art031
performance across a wide range of application domains,032
their applications are still limited by our inability to explain033
their behavior. Without being able to explain the patterns034
GNNs rely on to make predictions, it is impossible to jus-035
tify their use in applications where trust and safety are im-036
portant, and there is no way to extract useful information037

from them. This has motivated a significant amount of re- 038
search into techniques for GNN explainability. 039

Although there is research into inherently explainable 040
deep learning, such as ProtGNN [35] and GIB [31] for 041
GNNs, this approach generally comes at the cost of perfor- 042
mance. Therefore, most explanation methods are designed 043
to be applied post-hoc to trained models. Elucidating how 044
a GNN ”reasons” on graphs presents a completely new set 045
of challenges from deep learning explainability over image 046
and text data. Encodings of graphs lack the same spatial 047
information, and their structure must be represented explic- 048
itly, for example by adjacency matrices or edge lists. These 049
representations are inherently discrete, which violates as- 050
sumptions necessary for the application of commonly-used 051
gradient based methods [5, 19]. The outputs of GNNs are 052
further expected to be permutation equivariant with respect 053
to the ordering of the nodes, which further imposes con- 054
straints on generating explanation graphs for a GNN model. 055
A one-size-fits-all strategy may not work with the wide va- 056
riety of existing graph types (e.g., directed and undirected 057
graphs, graphs with node and edge features) and GNN lay- 058
ers (e.g., convolutions in GCNs, GATs, GINs). Although 059
it can be further extended, our method will focus on un- 060
weighted graphs and GraphSAGE-style graph convolutions. 061

1.1. Related Work 062

GNN interpretation has been largely focused on instance- 063
level explanation which aims to explain the reasoning be- 064
hind individual predictions. As identified in [34], at least six 065
categories of instance-level GNN explanation methods have 066
been proposed so far: gradient-based [20], perturbation- 067
based [18, 23, 30, 33], surrogate [27], generation-based 068
[13], decomposition [24], and counterfactual-based [17] 069
methods. These methods do not immediately provide in- 070
sights into the overall patterns a GNN has identified to make 071
predictions, but it is possible to consolidate instance-level 072
explanations to reveal model-level patterns. For example, 073
we can employ purely statistical methods (e.g., a rank-sum 074
test) to determine whether there are nodes/edges shared by 075
a significant portion of the explanations. A more recent 076
technique is GLGExplainer [2], which finds smaller com- 077

1

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ponents of the extracted explanations that can be used to078
build logical expressions consistent with the GNN’s predic-079
tions (e.g. the GNN predicts a class of graphs given the080
presence of a certain subgraph and the absence of another081
subgraph). However, these methods are limited by the scope082
of the training data, and can be influenced by bias in the083
dataset. A direct model-level explanation can offer more084
faithful explanations, and is more useful for determining the085
degree of bias in the model itself. In this work, we focus on086
post-hoc model-level explainability for GNNs.087

Relatively few methods exist to explain GNNs at the088
model level. XGNN [32] is the most widely used, and089
serves as the only baseline in several recent papers that fo-090
cus on similar objectives [2, 21, 25, 28]. These methods aim091
to generate graphs that exemplify graph structures used by092
a trained GNN for making classifications, without straying093
too far from the distribution of the training data where the094
model is not well-defined. XGNN involves training a sec-095
ond neural network by reinforcement learning to generate096
graphs that maximize the original GNN’s prediction for a097
specific class. OrphicX [15] and GEM [14] are two other098
methods that involve training a second neural network to099
generate explanations, but they use different objective func-100
tions designed to encourage causal explanations. The use of101
a second black box model in these methods reduces their re-102
liability and makes interpreting the generated explanations103
significantly more difficult.104

Other recent methods avoid training a second neural net-105
work in various ways. GNNInterpreter [28] and GraphEx106
[22] assume that the graphs in the dataset are sampled from107
a set of underlying distributions parameterized by continu-108
ous latent parameters. GNNInterpreter defines an objective109
function similar to XGNN during training, maximizing a110
target class’s logit while penalizing the distance between the111
embedding of the generated graph and the mean embedding112
of the training data to keep explanations in-distribution, and113
learns parameters through Monte Carlo gradient estima-114
tion. GraphEx attempts to solve this problem using max-115
imum likelihood estimation, which does not require gradi-116
ents from the model and only relies on its predictions of117
graphs in the dataset. PAGE [25] also maximizes predicted118
class probability, but restricts explanations to common sub-119
graphs in the target class.120

In the past, discrete optimization techniques have been121
applied to deep neural networks to solve inverse problems,122
such as in [3] and [1]. Finding a graph that maximizes the123
GNN output is a type of inverse problem. However, these124
existing methods were only defined for layers consisting of125
a linear transformation with ReLU activations, and rely on126
costly automated bound-tightening procedures to achieve127
feasible runtimes. This work will reformulate the optimiza-128
tion problem for explainability, generalize the application of129
mixed-integer programming on standard neural networks to130

a range of GNN architectures, and derive explicit bounds 131
for continuous variables that can be calculated with a single 132
forward pass through the network. 133

1.2. Current Issues and Our Contributions 134

There are several common problems among existing ap- 135
proaches for model-level GNN explanation. For one, they 136
all have many hyperparameters that can change the gener- 137
ated explanation graphs. Generating a high-quality expla- 138
nation requires specific settings for these hyperparameters, 139
but the more times a user runs the same algorithm with dif- 140
ferent hyperparameters, the more likely they are to gener- 141
ate spurious explanations. In cases where hyperparameters 142
modify the objective function used to calculate the quality 143
of explanations (e.g. weights for regularization terms), it is 144
impossible to quantitatively compare the quality of the gen- 145
erated explanations, even though they may be extremely dif- 146
ferent. This problem is exasperated by the fact that several 147
of these methods rely on stochastic gradient optimization to 148
optimize their explanations. Due to the stochastic nature of 149
this approach and the necessity of setting a maximum num- 150
ber of iterations, the objective value might be far from the 151
global optimum when an explanation graph is generated, 152
without any way of knowing that this is the case. Thus, the 153
corresponding explanation may not represent the informa- 154
tion that the objective function was designed to extract. 155

In this paper, we propose a new explanation method 156
based on mixed-integer programming (MIP) for finding 157
class-representative input graphs. This has several benefits 158
over existing approaches. (1) Unlike any existing method, 159
we can directly optimize over the discrete space of possi- 160
ble input graphs, without any restrictions on types of node 161
and edge features. The only assumption we make about 162
the space of graphs is a bounded size, and we do not re- 163
quire any assumptions about its underlying distribution. (2) 164
This approach has a minimal number of hyperparameters 165
that influence the explanation (only the size of the expla- 166
nation must be specified), facilitating the application of our 167
approach and mitigating the effects of bias when analyzing 168
the results. (3) We prove that our MIP formulation has a 169
globally optimal solution, and in many cases we can find 170
and verify this solution. In cases where this is intractable, 171
we can place an upper bound on the optimal solution, guar- 172
anteeing the quality of the generated explanation. 173

2. MIPExplainer 174

Our model-level explanation also seeks to optimize an input 175
graph G = (X,A) so that the GNN predicts a certain class 176
with the highest possible probability, where X contains the 177
d attributes for each node as row vectors for N nodes in 178
the graph and A = (aij) represents the N by N adjacency 179
matrix. We focus on the case of a binary adjacency matrix 180
where aij ∈ {0, 1}, so that aij = 1 indicates there is an 181

2

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

edge between nodes i and j. Let a GNN realize a function182
fc(G, θ) that maps G to the probabilities of several classes183
indexed by c and θ contains all the learned parameters in the184
GNN. During the GNN training, G is given and θ needs to185
be determined, whereas in many model explanation meth-186
ods, θ has been fixed, and we optimize G (i.e., X and A) to187
maximize fc(G, θ) (or a related objective).188

The proposed MIP will optimize G in terms of the val-189
ues of A and X . Each layer of the GNN imposes a set of190
constraints in the MIP. We add decision variables to repre-191
sent the output of each layer, which are constrained to the192
correct values in terms of the decision variables represent-193
ing the output of the previous layer. For example, for a fully194
connected layer, a new matrix of decision variables Y ′ will195
be added to the model and constrained with Y ′ = WY ′+b,196
where Y ′ are the decision variables representing the outputs197
of a previous layer and W and b are the model’s learned pa-198
rameters. Since the outputs of subsequent layers are con-199
strained exactly, ultimately all of the constraints define the200
feasible region of X and A. We place constraints on nodes201
and edges (or entries of A) so that the derived explanation202
forms a connected graph with valid features, and we can203
further constrain X and A to reduce the number of candi-204
date solutions for a single graph since the GNN is permu-205
tation equivariant with respect to the order of nodes. In the206
subsequent sections, we provide a detailed derivation of our207
MIP formulation by discussing the objective function and208
the various constraints.209

2.1. Objective Function210

Following the paradigm established by existing methods, an211
objective function for explanations typically contains two212
parts: a term related to class prediction and a regularizer that213
enforces the generated explanations to be in-distribution.214
In XGNN, the explanation generator is penalized during215
training for actions that violate manually-defined sets of216
rules, such as the maximum number of bonds that can be217
formed with a certain atom in a molecule. In GNNInter-218
preter, the embedding of the explanation graph needs to be219
close to the average embedding of graphs in the training set.220
While these regularization strategies may help confine the221
explanation graph to a region of the input space where the222
model is well-defined, they cannot guarantee the quality of223
the explanation. While regularization terms can normally224
be balanced through some tuning procedure, this is im-225
possible without knowing the ground-truth explanations for226
the GNN already, and attempting to determine the weights227
by judging the generated graphs qualitatively increases the228
likelihood of mistakenly accepting spurious explanations.229
Therefore, we do not apply any regularization in the ob-230
jective function during our experiments, but the proposed231
method is able to incorporate commonly used regularizers232
if desired.233

Figure 1. Logits for the Star and Wheel Graphs in the Shapes
Dataset

While maximizing a single logit while disregarding the 234
logits of other classes in the denominator (e.g., as done by 235
GNNInterpreter) is possible, this may lead to low quality 236
explanations in some circumstances. Predictions are made 237
based on the difference between the logits, and the absolute 238
value of a single logit may be unrelated to the prediction 239
of the network. To illustrate this, after training a GNN to 240
classify star graphs and wheel graphs of varying sizes (a 241
task defined in [28]), we plotted the logits it assigned to 242
the training data for both classes in Figure 1. Note that the 243
maximum logit for the wheel class is actually assigned to 244
a correctly-classified star graph. Thus, simply maximizing 245
the logit for wheels will not produce an effective explana- 246
tion for the wheel class. 247

To accurately find class-discriminative information, we 248
should maximize the difference between the logit of the tar- 249
get class and the logit of the other classes. Maximizing the 250
normalized probability, as done by XGNN, is possible but 251
can lead to numerical instability when maximizing because 252
improvements get exponentially smaller as the magnitude 253
of the logits increases. We can form an objective function as 254
a linear combination of all logits but with a positive coeffi- 255
cient only for the target class, but at the risk of a single neg- 256
ative logit dominating the objective value. To mitigate this 257
problem, we can maximize the difference between the logit 258
of the target class and the maximum of the other classes. In 259
our observation, the latter is more effective, so we focus on 260
discussing the following objective function: 261

max
G

(
fc(G, θ)−max

i̸=c
(fi(G, θ))

)
, (1) 262

where fi denotes the ith output of the GNN before the ap- 263
plication of the softmax function for classification. 264

2.2. Constraints 265

We make one crucial assumption about the node features, 266
that their values are bounded by a constant M . We do not 267
make assumptions on the node features or their distribution. 268
We also require that the number of nodes in the explanation 269
n is fixed in advance, which is the only hyperparameter that 270
changes the optimization problem being solved. 271

3

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

If GraphSAGE convolution layers are employed in the272
GNN, the updated node representations X ′ after each layer273
are calculated from existing node representations X with274
the formula275

X ′ = σ(XW1 + Aggregation(X)W2 + b) (2)276

where the aggregation is commonly realized by summing277
over neighbors’ attributes, i.e., Aggregation(X) = AX .278

Assume that a GNN model has Lc GraphSAGE-based279
convolution layers with sum aggregations and ReLU activa-280
tions, followed by a global feature-wise sum pooling layer281
and Lf fully connected (FC) layers with ReLU activations.282
In total, there are L = Lc + 1 + Lf layers (indexed as283

Li, i ∈ 1, . . . , L). We will use the following notation: W (i)
j ,284

matrices of scalars, denote the GNN’s matrices of learned285
weights in layer i. The vectors of scalars b(i) denote the286
GNN’s learned bias vectors in layer i. For notation con-287
venience, we also denote X(0) = X , where xij is the jth288
feature of node i.289

We will also add the following decision variables to our290
formulation, which will be constrained to the correct values291
based on X and A: Φ(i) represents the output of layer i be-292
fore the activation function, X(i) represents ReLU(Φ(i)),293
the output of layer i. We also represent ReLU(−Φ(i)) by294
B(i), while Z(i) are binary indicators representing the truth295
value of Φ(i) > 0 elementwise1. d is an indicator vector296
representing whether each element of Φ(L) is the maximum297
element in the output of layer L not including the target298
class (i.e., dimension j of d is 1 when dimension j of Φ(L)299
is the maximum, while the rest are all 0’s), and y represents300
the value of the maximum output of the GNN that is not for301
the target class. Aside from the binary variables A, Z(i),302
and d, all other variables are continuous.303

To constrain Φ(i) for the convolutional layers (1 ≤ i ≤304
Lc):305

Φ(i) = X(i−1)W
(i)
1 +AX(i−1)W

(i)
2 + b(i). (3)306

For the pooling layer i = Lc + 1 (with 1 representing a307
vector of 1s):308

Φ(i) = 1TΦ(i−1), (4)309

and for the fully connected layers (Lc + 1 < i ≤ L):310

Φ(i) = X(i−1)W
(i)
1 + b(i). (5)311

To constrain X(i) for all layers except the pooling and read-312
out layers (0 < i ≤ L − 1, i ̸= Lc + 1), we encode the313

1For elements of Φ(i) exactly equal to 0, the corresponding values of
Z(i) can still be 0, but this will not affect the computation.

ReLU output as follows: 314

X(i) −B(i) = Φ(i), (6) 315

X(i) ≤ MZ(i), (7) 316

B(i) ≤ M(1− Z(i)), (8) 317

0 ≤ X(i), B(i) ≤ M. (9) 318

For the pooling layer, we simply have that 319
X(Lc+1) = Φ(Lc+1). To constrain dj and y: 320

y ≥ X
(L)
̸=c , (10) 321

y ≤ X
(L)
̸=c + (max(U

X
(L)
̸=c

)1− L
X

(L)
̸=c

)(1− d), (11) 322∑
j

dj = 1, dj ∈ {0, 1}, (12) 323

where L
X

(L)
̸=c

and U
X

(L)
̸=c

represent lower and upper bounds 324

for the decision variables in X(L) excluding the output of 325
class c. A method to calculate these bounds based on the 326
bounds of the input will be discussed in a later section. 327
Most of these constraints are linear in terms of the deci- 328
sion variables except Eq.(3) where decision variables A and 329
X(i) multiply to form quadratic terms. Because A is bi- 330
nary, these terms can be equivalently reformulated into lin- 331
ear functions. There are several ways to perform the lin- 332
earization of quadratic terms with both continuous and bi- 333
nary variables. We describe one such method by change of 334
variables [10]. For a given binary variable a ∈ A and a con- 335
tinuous variable x ∈ X(i) bounded by M , let e = a×x be a 336
new intermediate decision variable. Let E(i) be the matrix 337
of AX(i) where entries are all calculated by summing the 338
corresponding e’s. Constraints in Eq.(3) can be rewritten as 339
follows with additional bound constraints: 340

Φ(i) = X(i−1)W
(i)
1 + E(i)W

(i)
2 + b(i), (13) 341

−Ma ≤ e ≤ Ma, (14) 342

x−M(1− a) ≤ e ≤ x+M(1− a). (15) 343

Now, our MIP has been transformed into a problem that 344

maximizes Eq.(1) which can be calculated as X(L)
c −y sub- 345

ject to constraints Eq.(13-15) and Eq.(4-12). Note that this 346
MIP has a concave objective function and all linear con- 347
straints when integrality is relaxed, so it is a mixed-integer 348
linear program (MILP). 349

2.3. Constraints on A and X 350

Additional constraints can be placed on A and X when gen- 351
erating explanations. For example, when the input space is 352
actually graphs with one-hot features, we can constrain the 353
sum of each row of X(0) to be equal to 1, and X can also 354
be defined with binary or integer decision variables when 355
appropriate. If the input graph is undirected, we can add the 356

4

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

constraints aij = aji for all i, j with 0 ≤ ij < n and i < j.357
We can prevent self-loops in the explanation by constrain-358
ing the diagonal elements of A to be 0.359

We also impose a partial ordering on the graph nodes360
node1, . . . , noden to ensure that the explanation graph is361
connected, or in the case of directed graphs, weakly con-362
nected (i.e. connected ignoring the directionality of the363
edges). We require that there is at least one edge between364
nodei and the set of nodes {nodej | i > j}. This be-365
comes a constraint on A, and specifically for each i with366
0 ≤ i < n, we add the constraint

∑
{j|i>j}(aij + aji) ≥ 1.367

These constraints also partially alleviate the effect of equiv-368
ariance (where the same graph can have many different A),369
because they reduce the MIP’s feasible region, but not the370
set of candidate graphs. This can easily be proven by show-371
ing that for any (weakly) connected graph, the nodes can be372
ordered in a way that satisfies these constraints by running373
depth-first-search (DFS) on such a graph ignoring edge di-374
rections. Starting at an arbitrarily-chosen node. The ith375
node found by DFS must have been found from one of the376
1 through i− 1 nodes.377

2.4. Generalizing to more GNNs378

Many highly performant GNN architectures can be per-
fectly represented by linear and quadratic constraints, and
many more can be closely approximated. For example, if
we choose our aggregation function to be a feature-wise av-
erage instead of a feature-wise sum, we can simply modify
constraint (4) as Φ(i) = 1TΦ(i−1) 1

N for i = Lc + 1, . If
mean aggregation is used in Eq.(2), we need another set of
decision variables D(i) for each layer, where row j of D(i)

will represent the feature-wise average of the neighbors of
node j. To properly constrain D(i), we add the constraint
1(1TA)D(i) = AX to the model. The elements of D can
be distributed in the multiplications for the left hand side,
and then all the terms can be linearized as previously de-
scribed. Now, constraint (3) can be changed to:

Φ(i) = X(i−1)W
(i)
1 +D(i)W

(i)
2 + b(i)

Consider a message passing layer from a Graph Isomor-379
phism Network [29], where updated node representations380
are calculated as X ′ = h((A + (1 + ϵ)I)X), h is a neural381
network, and ϵ is a constant. We can split this computation382
by constraining intermediate decision variables according383
to the inner piece, AX + ((1 + ϵ)I)X , and the application384
of the neural network to those intermediate variables, both385
of which we previously discussed how to express with lin-386
ear constraints. Additionally, piecewise-linear approxima-387
tions can be created for non-linear functions, allowing us to388
model different activation functions and the convolutional389
layers in GCNs or GATs.390

2.5. Optimality 391

We now show that a globally optimal solution to the MIP 392
problem described above always exists, and that it can be 393
provably found by MIPExplainer. 394

Theorem 1. Consider the MILP problem that maximizes 395

the objective function X
(L)
c − y, with decision variables A, 396

X(i), Φ(i), Z(i), B(i), E(i), dj , y subject to constraints (4- 397
15). A global optimum exists for this MILP. 398

Proof. Since all the constraints are linear equalities or in- 399
equalities (after linearizing the multiplication of binary and 400
continuous variables in Eq.3), they define a polyhedral fea- 401
sible region in the space parameterized by the decision vari- 402
ables if binary variables are relaxed to be ∈ [0, 1]. All deci- 403
sion variables in the MILP are bounded, either directly or in 404
terms of bounds on the input variables A and X , so the fea- 405
sible set is a closed polytope (a compact set). The objective 406
function is linear in terms of the decision variables as cal- 407
culated by X

(L)
c − y. Therefore, the linear relaxation of the 408

MILP must have an optimum, over the compact set, that is 409
located specifically on its boundary. In addition, there are a 410
finite number of integer solutions within the compact feasi- 411
ble region, so at least one of them must have the maximum 412
objective value. 413

We can use typical methods such as branch and bound, 414
cutting planes, and heuristics to find the optimal solution 415
efficiently. Using branch and bound, we start by finding 416
the optimal solution of the LP relaxation (i.e. the MIP with 417
the integrality constraints removed) of the MIP problem, for 418
example using the simplex method. This serves as an up- 419
per bound to the original problem with integer domains for 420
some decision variables. If some integral decision variables 421
take fractional values in the relaxation, we branch on one of 422
them by partitioning the set of candidate solutions for the 423
problem with integer constraints into 2 subproblems, one 424
with the extra constraint that a chosen fractional variable is 425
at most the floor of its value in the LP relaxation’s optimum 426
and another ensuring that the variable at least the ceiling 427
of that value. The optimal solution to the integral problem 428
will be the maximum optimal solution of these two subprob- 429
lems, which can be solved recursively in the same way. On 430
the other hand, any integer solution serves as a lower bound 431
to the integral problem’s optimum, and we can use heuris- 432
tics to find increasingly better solutions as we descend in 433
the search tree and fix more variables. If the linear relax- 434
ation solved at an internal node is infeasible or has a max- 435
imum objective value that is lower than our current lower 436
bound, we have proven that the optimal solution to the in- 437
tegral problem cannot lie anywhere in the subtree rooted at 438
that node, allowing us to skip all the nodes it contains in our 439
search. The process stops when there are no more subprob- 440
lems to explore, at which point we will have found the opti- 441
mal solution to the integral problem. In our experiments, we 442

5

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

use Gurobi Optimizer [7] to find the optimal solution effi-443
ciently. This solver benefits from being fully deterministic,444
allowing us to generate explanations with a high degree of445
consistency.446

2.6. Practical Considerations447

In practice, it can be difficult to solve MILPs correspond-448
ing to large GNNs, and several techniques are needed to449
make the process tractable. Often, just finding an initial450
setting for all of the decision variables that satisfies all con-451
straints is difficult. In our experiments, we found that this452
step can actually take longer than the subsequent optimiza-453
tion. This problem can be completely eliminated with a454
warm start. Starting from an arbitrary input graph (either455
from the dataset or not), we can compute a forward pass456
through the network to obtain a valid setting of initial val-457
ues for almost all of the decision variables. In cases where458
additional constraints have been imposed on the graph, such459
as to ensure connectivity as described above, an input graph460
must be converted into the canonical form that also satisfies461
these constraints.462

While a single, large number can be used to bound all of463
the continuous decision variables, tighter bounds greatly re-464
duce the time needed to compute optimal solutions. While465
automated bound-tightening procedures exist, it is faster to466
use knowledge of the problem to bound manually. Each467
hidden representation computed by the model is encoded468
by a separate set of decision variables. Assuming we have469
bounded the decision variables for one, we can compute470
bounds for the outputs of a following transformation. For471
example, given a hidden representation vector x with lower472
bound xL and upper bound xU , we can bound the output of473
a linear layer x′ = Wx+ b below and above by474

x′
L = ReLU(W)xL + ReLU(−W)xU + b (16)475

x′
U = ReLU(W)xU + ReLU(−W)xL + b (17)476

Given bounds on the the decision variables representing the477
explanation graph, the input to the GNN, we can follow the478
propagation of values through the GNN to iteratively bound479
the set of decision variables for each hidden representation.480
Bounds for the outputs of ReLU activation layers will be481
the same as their inputs, but clipped below at 0. In the case482
of layers like GraphSAGE convolutions where the output483
is the sum of several matrix multiplications, bounds can be484
derived for each term in the sum and then added together.485

Floating-point precision errors can lead to serious prob-486
lems for MIQP solvers, and in cases where decision vari-487
ables can take both small and large values, a significant488
amount of time may be needed to avoid numerical instabil-489
ity. This is relevant when the weights of GNNs become very490
small, an effect often produced by regularization. However,491
we found that weights below a certain threshold (we chose492

10−5) could be floored to zero without significantly affect- 493
ing the behavior of the network. All performance metrics 494
for the networks used in the experiments were computed 495
after the networks were pruned in this way. We also found 496
that smoothing networks with regularization improved so- 497
lution times. 498

Despite these measures, runtime remains the most signif- 499
icant drawback of the proposed approach. In our largest ex- 500
periments, we were not able to guarantee a global optimum 501
within a single day. However, the largest reason for this run- 502
time is the amount of symmetry in our formulation. A single 503
graph corresponds to a number of adjacency matrices that, 504
in the worst case, grows exponentially with the number of 505
vertices it contains. This hinders our ability to tighten the 506
upper bound while exploring the search tree, since an ex- 507
isting global optimum may be transformed into another as 508
we traverse a branch. In the future, we plan to address this 509
problem by introducing additional constraints to reduce the 510
number of feasible adjacency matrices in each equivalence 511
class defined by graph isomorphism. Despite the increased 512
time needed to prove optimality, the proposed method often 513
finds optimal solutions early in the search. Therefore, we 514
impose a time limit during experiments to prove its practi- 515
cality. 516

3. Empirical Evaluation 517

We use two synthetic datasets and one real-world dataset to 518
evaluate our method: Is Acyclic, Shapes, and MUTAG. The 519
Is Acyclic dataset comes from XGNN’s experiments, and 520
has two classes consisting of cyclic and acyclic graphs of 521
various types. The cyclic graphs include graphs like grids, 522
single cycles, and wheels, while the acyclic class includes 523
graphs like paths and various types of trees. Every node is 524
given the same feature, a single constant, in order to isolate 525
the explanation methods’ ability to capture structural infor- 526
mation. For the Shapes dataset, which comes from GN- 527
NInterpreter’s experiments, graphs are first generated from 528
one of 5 base classes: lollipop graphs contain a fully con- 529
nected component with one connection to a path graph’s end 530
node, grid graphs are lattices where each internal node has 4 531
neighbors, star graphs have multiple outer nodes connected 532
to a single central node, and wheel graphs are star graphs 533
with a single cycle connecting the outer nodes. For each 534
of these graphs, a uniform proportion between 0 and 0.2 is 535
chosen, and the number of edges in the graph is increased by 536
that amount by adding in edges uniformly at random. The 537
features of each node are the same as in Is Acyclic. The 538
MUTAG dataset [4] consists of graphs of chemical com- 539
pounds, where nodes represent atoms and edges represent 540
bonds between them. Each compound is classified as be- 541
ing either mutagenic or non-mutagenic. As described by 542
the creators of this dataset and in [9], mutagenic molecules 543
tend to have higher numbers of fused rings of carbon atoms. 544

6

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

of # of Average Average # of Node
Graphs Classes # of Nodes # of Edges Features

Is Acyclic 533 2 28.5 68.1 1
Shapes 8000 5 27.2 144.9 1
MUTAG 188 2 17.9 39.6 7

Table 1. Dataset Summary

For this dataset, each node’s features are a one-hot vector545
indicating atom type.546

3.1. Experimental Setup547

Every dataset was randomly split into a training set (80%)548
and a test set (20%). GNNs were trained on each, and549
performance metrics are reported in Table 2. In all ex-550
periments, the GNNs use GraphSAGE-style convolutions551
with sum being used as the aggregation operator, followed552
by a global mean pooling layer, and finally several fully-553
connected (FC) layers. ReLU activations are placed be-554
tween each hidden layer. For the Is Acyclic and Shapes555
datasets, the GNN uses 2 convolutional layers computing556
16 features per node, a FC layer computing 8 features, and557
a final FC layer to compute the class logits. For the MUTAG558
dataset, the GNN uses 2 convolutional layers computing 64559
and 32 features per node, two FC layers computing 16 and 8560
features per graph, and a final FC layer to compute the log-561
its. We implemented these GNNs using PyTorch-Geometric562
[6]. Models were trained for 200 epochs, optimizing with563
Adam [11] with a learning rate of 10−3 and L2 regulariza-564
tion with weight 10−4.565

For the experiments with XGNN, we used the imple-566
mentation provided by the authors in DIG2 [16]. For the567
experiments with GNNInterpreter, we also use the imple-568
mentation provided by the authors3. For the MUTAG569
dataset, XGNN’s graph generator policy network was pe-570
nalized when it violated valence constraints while gener-571
ating molecules, and no penalties were used on the other572
datasets. Both methods optimize objective functions with573
weighted regularizers, but there is no single quantitative574
metric for model-level explanation quality, so it is not possi-575
ble to objectively tune the hyperparameters associated with576
these methods. Instead, we used default sets of hyperparam-577
eters provided in the implementations. An exception was578
made for XGNN, the default regularization weights caused579
the graph generator to quickly learn a policy that stopped580
after the first node in several instances. To fix this, we in-581
creased the reward for creating additional valid edges until582
it became favorable for the model to generate reasonably-583
sized explanations.584

In the experiments with MIPExplainer, adjacency ma-585
trices were constrained to be symmetric to represent undi-586
rected connected graphs without self-loops. For the MU-587

2https://github.com/divelab/DIG
3https : / / github . com / yolandalalala /

GNNInterpreter

Train Accuracy Test Accuracy # of Model Parameters

Is Acyclic 0.998 1.000 730
Shapes 0.991 0.993 757
MUTAG 0.893 0.895 5770

Table 2. Performance Metrics of Trained GNNs

TAG dataset, node features were constrained to one-hot vec- 588
tors by ensuring the sum of the elements in each row added 589
up to 1. Any experiments lasting longer than 6 hours were 590
automatically terminated, and we report the best solution 591
found. To ensure that any resemblance to target classes 592
would not come from an initial solution, all runs for our 593
method were initialized with a path graph of n nodes. 594

3.2. Results 595

The main results from our experiments are shown in Table 596
3. Note that when depicting molecular graphs, the node 597
colors are assigned as follows: gray=C, blue=N, red=O, 598
cyan=F, purple=I, green=Cl, and brown=Br. In the exper- 599
iments with Is Acyclic, MIPExplainer explains the cyclic 600
class with a fully-connected graph, which has the maximum 601
possible number of cycles, and the acyclic class with a star 602
graph, which is one of the most straightforward examples 603
from the class. XGNN does explain the acyclic class with 604
a graph that has fewer cycles than the explanation for the 605
cyclic class, but both graphs are connected somewhat ran- 606
domly and both contain cycles. On the other hand, GN- 607
NInterpreter produces a more densely-connected graph to 608
explain the acyclic class than the cyclic class. For MIPEx- 609
plainer, the solver was able to prove the optimality of both 610
classes, taking 1.52 seconds for the cyclic class explanation 611
and 227.68 seconds for the acyclic class explanation. The 612
left plot in Figure 4 shows how the bounds converged over 613
the course of the latter experiment. This demonstrates how 614
graph symmetries factor into MIPExplainer’s runtime. A 615
fully connected graph with equal node features only has a 616
single adjacency matrix and feature matrix representation, 617
while a star graph with n nodes has n representations, as 618
there are n options for the position of the central node in 619
the node ordering. As a result, more of the search tree must 620
be explored to prove optimality. The right plot in Figure 4 621
shows the number of explored nodes and unexplored leaf 622
nodes over the course of the search for the optimal solution. 623
A total of 183543 nodes were explored to verify the optimal 624
solution. 625

For the Shapes dataset, we can easily recognize the 626
classes of each of the explanations generated by MIPEx- 627
plainer. Despite the fact that a significant amount of noise 628
was added to the training data, the explanations are rela- 629
tively clean. For reference, three examples from the wheel 630
class are shown in Figure 3. In the cases of lollipops and 631
stars, we see important features of the graph duplicated, a 632
lollipop with two ends and star with two centers. Because 633
we chose a higher number of nodes to make the patterns 634

7

https://github.com/divelab/DIG
https://github.com/yolandalalala/GNNInterpreter
https://github.com/yolandalalala/GNNInterpreter

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Is Acyclic - Cyclic Is Acyclic - Acyclic MUTAG - Mutagenic MUTAG - Non-Mutagenic

Shapes - Lollipop Shapes - Wheel Shapes - Grid Shapes - Star

Table 3. Generated Explanations. The graphs from left to right are generated by MIPExplainer, XGNN, and GNNInterpreter, respectively

Figure 2. Smaller explanations for lollipops, wheels, grids, and
stars respectively

Figure 3. Three randomly selected wheel graphs from the Shapes
dataset

clearer, optimality was not proven for these explanations,635
but they still appear to be reasonable. To further demon-636
strate that MIPExplainer performs well at varying choices637
of the number of nodes in the explanation, we provide 5-638
node explanations for the same classes in Figure 2, which639
were proven to be optimal.640

For the MUTAG dataset, our results show that641
the model’s true behavior may not accurately describe642
chemistry-related patterns in the data. For the mutagenic643
class, the produced explanation is simply a complete graph644
of carbon atoms. Comparing this with the result from the645
cyclic class of the cyclicity dataset, it seems that the model646
may simply be looking for arbitrary cycles of carbon atoms,647
not just ones that occur in molecules. Neither of the expla-648
nations generated by the two baseline methods contained649
a cycle of carbon atoms. The explanation of the non-650
mutagenic class are not as reasonable across all methods,651
which is expected since non-mutagens are more accurately652
described by the absence of mutagenic features than by non-653
mutagenic features. The generated explanation mostly con-654
sists of bromine atoms, which only actually appear in 2 of655
the graphs in the dataset. Despite the larger network ar-656
chitecture, both these solutions were able to be verified as657
optimal within the time limit.658

4. Conclusion and Discussion659

Despite the ability of GNNs to model complex patterns in660
graph-structured data, their lack of transparency remains661
one of the key factors hindering their application in a wide662

Figure 4. Solver metrics while explaining the acylcic class of
Is Acyclic: Bounds converging to the globally optimum (left), and
the number of explored/unexplored nodes in the search tree (right)

range of domains. Model-level explanations of these net- 663
works are key to understanding the information they learn 664
and improving their trust and reliability. In order to ad- 665
dress key shortcomings that limit the use of existing meth- 666
ods in most real-world situations, this work proposes MIP- 667
Explainer for generating such explanations. Without a way 668
to objectively evaluate their quality, it is essential that gen- 669
erated explanations are truly high-quality solutions of opti- 670
mization problems that are not sensitive to user-defined hy- 671
perparameters. MIPExplainer achieves this by avoiding the 672
use of both weighted regularizers and stochastic optimiza- 673
tion, instead focusing on maximizing a simpler objective 674
with deterministic methods that are able to prove the global 675
optimality of the generated solutions. Minimal assumptions 676
are made about the distributions of graphs and their features, 677
and no secondary models are trained in the process. 678

The proposed method also has several shortcomings, 679
which we hope to address in future work. While it is more 680
general than previous methods in some ways, it also re- 681
quires different GNN layers to be individually encoded with 682
constraints, and may require piecewise-linear approxima- 683
tions for highly nonlinear components. From a practical 684
perspective, the runtime of MIPExplainer as described here 685
is the most significant. Reducing symmetries in the encod- 686
ing can greatly improve runtime, but this is a hard problem 687
in general, and more work is required to understand which 688
symmetries are the most costly when optimizing over sets 689
of graphs in this way. Despite these limitations, even before 690
proving optimality, we observe that the proposed method is 691
generally able to find reasonable explanations. 692

8

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References693

[1] Navid Ansari, Hans-Peter Seidel, and Vahid Babaei. Mixed694
integer neural inverse design. ACM Transactions on Graph-695
ics, 41(4):151:1–151:14, 2022. 2696

[2] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò,697
and Andrea Passerini. Global Explainability of GNNs via698
Logic Combination of Learned Concepts. 2022. 1, 2699

[3] Myun-Seok Cheon. An outer-approximation guided opti-700
mization approach for constrained neural network inverse701
problems. Mathematical Programming: Series A and B, 196702
(1-2):173–202, 2022. 2703

[4] Asim Kumar Debnath, Rosa L. Lopez De Compadre,704
Gargi Debnath, Alan J. Shusterman, and Corwin Hansch.705
Structure-activity relationship of mutagenic aromatic and706
heteroaromatic nitro compounds. Correlation with molecu-707
lar orbital energies and hydrophobicity. Journal of Medicinal708
Chemistry, 34(2):786–797, 1991. 6709

[5] Alexandre Duval and Fragkiskos D. Malliaros. GraphSVX:710
Shapley Value Explanations for Graph Neural Networks. In711
Machine Learning and Knowledge Discovery in Databases.712
Research Track, pages 302–318, Cham, 2021. Springer In-713
ternational Publishing. 1714

[6] Matthias Fey and Jan E. Lenssen. Fast Graph Representation715
Learning with PyTorch Geometric. In ICLR Workshop on716
Representation Learning on Graphs and Manifolds, 2019. 7717

[7] Gurobi Optimization, LLC. Gurobi Optimizer Reference718
Manual, 2023. 6719

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. Induc-720
tive Representation Learning on Large Graphs. 2017. 1721

[9] Kuo-Hsiang Hsu, Bo-Han Su, Yi-Shu Tu, Olivia A. Lin, and722
Yufeng J. Tseng. Mutagenicity in a Molecule: Identification723
of Core Structural Features of Mutagenicity Using a Scaffold724
Analysis. PLOS ONE, 11(2):e0148900, 2016. 6725

[10] Erwin Kalvelagen. Multiplication of a continuous and a bi-726
nary variable, 2008. 4727

[11] Diederik P. Kingma and Jimmy Ba. Adam: A Method for728
Stochastic Optimization. In 3rd International Conference on729
Learning Representations, ICLR 2015, San Diego, CA, USA,730
May 7-9, 2015, Conference Track Proceedings, 2015. 7731

[12] Thomas N. Kipf and Max Welling. Semi-Supervised Classi-732
fication with Graph Convolutional Networks. 2016. 1733

[13] Wanyu Lin, Hao Lan, and Baochun Li. Generative causal734
explanations for graph neural networks. In International735
Conference on Machine Learning, pages 6666–6679. PMLR,736
2021. 1737

[14] Wanyu Lin, Hao Lan, and Baochun Li. Generative Causal738
Explanations for Graph Neural Networks. In International739
Conference on Machine Learning, 2021. 2740

[15] Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li. OrphicX:741
A Causality-Inspired Latent Variable Model for Interpreting742
Graph Neural Networks. 2022. 2743

[16] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao744
Yuan, Shurui Gui, Zhao Xu, Haiyang Yu, Jingtun Zhang, Yi745
Liu, Keqiang Yan, Bora Oztekin, Haoran Liu, Xuan Zhang,746
Cong Fu, and Shuiwang Ji. DIG: A Turnkey Library for747
Diving into Graph Deep Learning Research. arXiv preprint748
arXiv:2103.12608, 2021. 7749

[17] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten 750
De Rijke, and Fabrizio Silvestri. Cf-gnnexplainer: Coun- 751
terfactual explanations for graph neural networks. In Inter- 752
national Conference on Artificial Intelligence and Statistics, 753
pages 4499–4511. PMLR, 2022. 1 754

[18] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, 755
Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized 756
explainer for graph neural network. Advances in neural in- 757
formation processing systems, 33:19620–19631, 2020. 1 758

[19] Alan Perotti, Paolo Bajardi, Francesco Bonchi, and André 759
Panisson. Explaining Identity-aware Graph Classifiers 760
through the Language of Motifs. In 2023 International Joint 761
Conference on Neural Networks (IJCNN), pages 1–8, 2023. 762
ISSN: 2161-4407. 1 763

[20] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, 764
Charles E Martin, and Heiko Hoffmann. Explainability 765
methods for graph convolutional neural networks. In Pro- 766
ceedings of the IEEE/CVF conference on computer vision 767
and pattern recognition, pages 10772–10781, 2019. 1 768

[21] Sayan Saha, Monidipa Das, and Sanghamitra Bandyopad- 769
hyay. GraphEx: A User-Centric Model-Level Explainer for 770
Graph Neural Networks. In The First Tiny Papers Track at 771
ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 772
5, 2023. OpenReview.net, 2023. 2 773

[22] Sayan Saha, Monidipa Das, and Sanghamitra Bandyopad- 774
hyay. GraphEx: A User-Centric Model-Level Explainer for 775
Graph Neural Networks. 2023. 2 776

[23] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 777
Interpreting graph neural networks for nlp with differentiable 778
edge masking. arXiv preprint arXiv:2010.00577, Proceed- 779
ings of International Conference on Learning Representa- 780
tions, 2020. 1 781

[24] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi 782
Nakajima, Kristof T Schütt, Klaus-Robert Müller, and 783
Grégoire Montavon. Higher-order explanations of graph 784
neural networks via relevant walks. IEEE transactions 785
on pattern analysis and machine intelligence, 44(11):7581– 786
7596, 2021. 1 787

[25] Yong-Min Shin, Sun-Woo Kim, and Won-Yong Shin. PAGE: 788
Prototype-Based Model-Level Explanations for Graph Neu- 789
ral Networks. 2022. 2 790

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, 791
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph At- 792
tention Networks. 2017. 1 793

[27] Minh Vu and My T Thai. Pgm-explainer: Probabilistic 794
graphical model explanations for graph neural networks. Ad- 795
vances in neural information processing systems, 33:12225– 796
12235, 2020. 1 797

[28] Xiaoqi Wang and Han-Wei Shen. GNNInterpreter: A Proba- 798
bilistic Generative Model-Level Explanation for Graph Neu- 799
ral Networks. 2022. 2, 3 800

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 801
How Powerful are Graph Neural Networks? 2018. 5 802

[30] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, 803
and Jure Leskovec. Gnnexplainer: Generating explanations 804
for graph neural networks. Advances in neural information 805
processing systems, 32, 2019. 1 806

9

CVPR
#16514

CVPR
#16514

CVPR 2024 Submission #16514. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[31] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou807
Huang, and Ran He. Graph Information Bottleneck for Sub-808
graph Recognition. 2020. 1809

[32] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN:810
Towards Model-Level Explanations of Graph Neural Net-811
works. In Proceedings of the 26th ACM SIGKDD Interna-812
tional Conference on Knowledge Discovery & Data Mining,813
pages 430–438, Virtual Event CA USA, 2020. ACM. 2814

[33] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji.815
On explainability of graph neural networks via subgraph ex-816
plorations. In International conference on machine learning,817
pages 12241–12252. PMLR, 2021. 1818

[34] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Ex-819
plainability in Graph Neural Networks: A Taxonomic Sur-820
vey. IEEE Transactions on Pattern Analysis and Machine821
Intelligence, 45(5):5782–5799, 2023. 1822

[35] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and823
Cheekong Lee. ProtGNN: Towards Self-Explaining Graph824
Neural Networks. Proceedings of the AAAI Conference on825
Artificial Intelligence, 36(8):9127–9135, 2022. 1826

10

	. Introduction
	. Related Work
	. Current Issues and Our Contributions

	. MIPExplainer
	. Objective Function
	. Constraints
	. Constraints on A and X
	. Generalizing to more GNNs
	. Optimality
	. Practical Considerations

	. Empirical Evaluation
	. Experimental Setup
	. Results

	. Conclusion and Discussion

