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1. INTRODUCTION 

Depression and anxiety disorders (DP and AX) are heterogeneous and etiologically complex 

psychiatric syndromes.  Although considered by Diagnostic and Statistical Manual of Mental Disorders 

(DSM) as two separate disorders, depression and anxiety involve dysregulation of identical 

neurotransmitter systems and may share the neural underpinnings in a continuum of psychopathology.  

Tremendous progress has been made in characterizing the neural mechanisms of emotional and 

cognitive impairments (1–3) in DP/AX. For instance, dysfunctions in the positive valence system (PVS) 

(4) and negative valence system (NVS) (5), and executive control (EC) (6), such as working memory 

(7,8), have been frequently observed in DP/AX patients. Studies have successfully employed magnetic 

resonance imaging (MRI) to quantify structural and functional brain differences between individuals 

with DP or AX and healthy controls (HCs). For instance, an earlier work reviewed salience, affective 

(threat and reward) processing, attention, and cognitive control network dysfunction and highlighted 

over-activity of the saliency circuit (anterior cingulate and insula) and under-activity of executive 

control circuit in DP/AX (2). Other investigations found the roles of the default mode network (9,11) 

or dysfunctional reward circuit (13–16) in DP/AX.   

Among the MRI data, task fMRI (tfMRIs) offers unique data where a behavioral paradigm can 

capture multiple psychological constructs, and seemingly different behavioral paradigms may yield 

contrasts of brain activities that reflect the same construct. For instance, in the Human Connectome 

Project (HCP) dataset (17), with the gambling task, investigators have identified the behavioral and 

neural correlates of both PVS (win) and NVS (loss) (18). Although innovative machine learning and 

statistical approaches has been applied to characterize the conceptual overlap in constructs across the 

component contrasts of different behavioral tasks, and the circuit-based taxonomy that captures the 

transdiagnostic heterogeneity of DP/AX (19,20), no studies have investigated how seemingly different 

PVS and NVS construct may speak to the same neural markers pertinent to the transdiagnostic 



heterogeneity of DP/AX, and new analytics is needed to innovate the way to model task fMRI data so 

we can connect multiple construct-related behaviors. 

Here, we select the gambling win and loss tfMRI in the Human Connectome Project (HCP) (10) 

dataset to represent positive and negative emotion valences, and to validate the neural basis of DP/AX 

with a novel artificial neural network (ANN). In the ANN model, we jointly inferred DP and AX via 

multi-task learning (MTL) (21), a machine learning principle jointly estimating models for multiple 

inferential goals when the goals (here, predicting DP and AX) are assumed to be related. Besides, with 

gambling win and loss tasks as the input, multi-view learning framework (MVL) (22) as utilized in the 

ANN model to predict DP and AX with neural science knowledge extracted from both PVS and NVS. 

After fitting the model, we employed the Shapley additive explanations (SHAP) (23), a game theoretic 

approach to explain the output of any machine learning model, to interpret the proposed ANN by 

identifying critical FC markers of win and loss tasks that differentiate DP/AX from HC.  

 

2. METHOD AND MATERIALS 

2.1 Subjects and clinical assessments 

We curated data from the HCP S1200 Subjects Release, which contains clinical and 3T 

magnetic resonance imaging (MRI) scans of 1,206 young adults (age 22-35). A total of 231 subjects 

were excluded from analyses because of missing depression and/or anxiety scores (n = 6), incomplete 

gambling task functional MRI scans (n = 126), or questionable image quality/excessive head 

movements (n = 99). The final sample consisted of 975 participants (xxx women). 

Participants were assessed with the Achenbach Adult Self Report (ASR) (24). We used the data 

of the DSM-oriented subscales of depression and anxiety in the ASR. Specifically, the age- and sex- 

adjusted depression and anxiety T scores ≥ 65 were identified as the depression (DEP; n = 65) and 

anxiety (AX; n = 46) groups, respectively, with 26 participants included in both depression and anxiety 

groups. The remaining 860 participants with both depression and anxiety T scores < 65 were identified 

as the healthy control (HC) group (see Supplementary Table S2 for demographic statistics).  

2.2 Imaging protocol and fMRI scans 

 HCP imaging protocol and data processing have been described in detail by Barch et al (1). 



Briefly, MRI was done using a customized 3 T Siemens Connectome Skyra with a standard 32-channel 

Siemens receiver head coil and a body transmission coil. T1-weighted high-resolution structural images 

were acquired using a 3D MPRAGE sequence with 0.7 mm isotropic resolution (FOV = 224 × 224 mm, 

matrix = 320 × 320, 256 sagittal slices, TR = 2400 msec, TE = 2.14 msec, TI = 1000 msec, FA = 8°) 

and used to register functional MRI data to a standard brain space. Tasks fMRI data were collected 

using gradient-echo echo-planar imaging (EPI) with 2.0 mm isotropic resolution (FOV = 208 × 180 

mm, matrix = 104 × 90, 72 slices, TR = 720 msec, TE = 33.1 msec, FA = 52°, multi-band factor = 8). 

 In the gambling task, participants guessed if a mystery card (with a number 1-9) was higher or 

lower than 5 to win money, with feedback of win, loss, or even (when the number is “5”) provided. The 

task was presented in blocks of 8 trials that are either mostly win (6 win trials pseudo randomly 

interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly loss (6 loss 

trials interleaved with either 1 neutral and 1 win trial, 2 neutral trials, or 2 reward trials). In each of the 

two runs, there were 2 mostly win and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 s 

each). All the participants are provided with money as a result of completing the task, though it is a 

standard amount across subjects. 

 

2.3 Imaging data preprocessing and functional connectivity metrics 

 As described in our prior work (25), imaging data were analyzed with Statistical Parametric 

Mapping (SPM8, Welcome Department of Imaging Neuroscience, University College London, U.K.). 

Images of each individual subject were first realigned (motion corrected). A mean functional image 

volume was constructed for each subject per run from the realigned image volumes. These mean images 

were co-registered with the high-resolution structural MPRAGE image and then segmented for 

normalization with affine registration followed by nonlinear transformation. The normalization 

parameters determined for the structural volume were then applied to the corresponding functional 

image volumes for each subject. The voxel is of 2×2×2 mm3 after spatial normalization. Finally, the 

images were smoothed with a Gaussian kernel of 4 mm at Full Width at Half Maximum. 

We used Shen’s 268 nodes (12) defined through groupwise graph theory-based parcellation 

clustering of whole-brain connectivity matrices, as the template of the whole brain. For each participant, 



we extracted the average time series data of the 268 ROIs and calculated 268×268 functional connection 

(FC) matrices for win, loss, and baseline blocks, respectively. To identify the correlation of the positive 

(win) and negative (loss) valence to the DP/AX, the z-transformed baseline FC matric were subtracted 

from the z-transformed win and loss FC matrices, and the differences were used in the following 

analysis.  

 

2.4 Machine learning analysis  

2.4.1 Overall analytic goals and routines 

Of the 865 subjects, 649 (75%, with 42 DP subjects, 27 AX subjects (with 15 comorbid DP and 

AX), and 595 HCs) were used for discovery and 216 (14 DP subjects, 9 AX subjects (with 5 comorbid 

DP and AX), and 198 HCs) for replication. The discovery set was further split into training (n=432, 28 

DP subjects, 18 AX subjects (with 10 comorbid DP and AX), and 396 HCs) and validation (n=217, 14 

DP, 9 AX subjects (with 5 comorbid DP and AX), and 199 HCs) sets to allow validation of the 

classifiers without involving the replication set. Supplementary Table S3 shows the demographic and 

clinical characteristics of the training and replication samples and the statistics.  

Figure 1 shows the analytic procedures. Although sex is a critical factor, because sex-stratified 

analyses reduce the available statistical power, we accounted for covariate effects (ref) in the 

computation of each FC feature by regressing out age and sex in a linear model of the training data. 

Validation and replication datasets were corrected using the same linear models of training data. The 

training sample was used to create classifiers to differentiate DP or AX subjects from HCs. The 

validation sample was used to compare classifiers and select model’s hyper-parameter setting achieving 

the highest classification accuracy. During replication, the classifier was trained with the discovery set 

under the validated hyper-parameter setting, and the fitted classifier were applied to the replication 

sample to assess classification accuracy. Finally, SHAP analysis was employed to interpret the 

importance of task-evoked fMRI functional connectivity features (FCs) on DP/AX prediction within 

the classifier.  



  

2.4.2 Differentiating depressed and anxiety individuals from controls 

We constructed an ANN that performed multi-view learning (MVL) and multi-task learning 

(MTL) to differentiate DP or AX subjects from HCs simultaneously (workflow shown in 

Supplementary Figure S1). The MVL enables the ANN to predict DP/AX with both positive and 

negative emotional valence simultaneously, while the MTL allows the ANN to be trained using both 

DP and AX samples and both win and loss FC matrices.  

In the MVL framework, DP/AX was predicted from two views, i.e., win and loss tasks. Each 

of the task FC matrices was transformed into a set of low-dimensional representations of brain networks 

with a FC matrix decomposition method proved to be effective on predicting alcoholism based on FC 

features in our early works (2). Specifically, each of the FC matrices involving the 268 ROIs was 

divided into 8 within-network and 28 between-network FC sub-matrices following the definition in 

(ref). An ANN module was used to transfer each of the brain network into a low-dimensional 

representation. Then we utilized the Transformer (26) to highlight subject-specific correlations between 

brain networks in both win and loss tasks with its self-attention mechanism, and to compress the 

processed low-dimensional presentations into the low dimensional representation of the whole-brain 

network. Finally, a ANN module was attached after the Transformer to predict DP and AX jointly with 

the MTL framework. 



To examine whether MVL and/or MTL improved the classification, three ANNs were trained 

and their performance compared: (i) a model with MVL but without MTL, i.e., an ANN trained to 

classify DP/AX subjects separately from HCs directly with both win and loss FC matrices; (ii) a model 

without MVL but with MTL, i.e., an ANN trained to classify DP/AX jointly with win or loss FC matrix; 

and (iii) our approach with both MVL and MTL. To train the MTL model, we minimized the objective 

function measuring the overall DP and AX (vs. HC) classification error. Objective functions of the other 

two models are described in Supplementary Methods. By training the ANN model with the training 

set, and comparing the area under the receiver operating characteristic curves (AUCs) of the resultant 

DP and AX classifiers on the validation sample, we selected the best hyper-parameter setting for the 

ANN model. Under the selected hyper-parameter setting, the proposed ANN model was retrained with 

the discovery set, and evaluated with the replication set.  

Statistical significance was estimated by permutation-testing whether any of the above three 

classifiers performed significantly better than chance. We randomly permuted the DP, AX and HC 

labels in the discovery and replication sets. For each permuted discovery dataset, we trained ANN 

classifiers using the above-mentioned training procedure, classified DP/AX in the replication sample, 

and tested whether the permuted classification performance was significantly worse than the non-

permuted ANNs. We repeated this procedure 1000 times and report the statistical significance of 

classification accuracy.  

 

2.4.3 Model interpretation 

SHAP analysis was performed to interpret the predictive model, which employs the DeepLIFT 

algorithm to infer the contribution of FCs on the DP/AX predictions in the ANN model for each feature 

and each subject in discovery and replication datasets. A single SHAP value is a real number that refers 

to a single feature of a subject for an output of the ANN model (DP or AX prediction), and the sign of 

the SHAP value shows the direction of the FC drives the prediction of a specific subject, while the 

absolute value means the impact of that FC. The sum of all SHAP values of DP/AX in the win and loss 

FC matrices for a given subject provides the difference between the prediction of DP/AX and the 

average of the samples’ outcomes.  



The mean of the absolute SHAP value across subjects was computed to quantify the influence 

of each FC feature on DP/AX prediction. For both the win and loss FC matrices, the Wilcoxon signed-

rank test was applied to assess whether the mean of the absolute SHAP value for each FC is significantly 

greater (P > 0.05, with Bonferroni correction) than the average absolute SHAP value calculated over 

all FCs within the respective FC matrix. 

3. RESULTS 

3.1 Distinguishing DP and AX from HC: the effects of MVL and MTL 

We conducted an ablation study to investigate the impact of MTL and the combined effect of 

positive and negative valences on DP/AX prediction. Specifically, we contrasted the AUC scores for 

DP and AX prediction in the replication set. This was done between the ANN with both MVL and MTL, 

and the ANN with MTL/MVL. Figure X shows the ANN model with both MVL and MTL achieved 

the highest AUC in predicting both DP (0.67, P < 0.05, permutation test) and AX (0.68, P < 0.05). 

Without MTL, the proposed ANN can’t get any significant DP and AX prediction, which shows that 

the shared neural markers between DP and AX could greatly improve ANN’s DP and AX prediction 

performance. For the MTL ANN without MVL, only significant DP prediction (0.66, P < 0.05) with 

the loss FC matrix can be achieved, which highlighted the importance of the negative emotional valence 

in DP prediction, and the combination of positive and negative emotional valences in DP/AX 

prediction.   



 

3.2 Interpretation of ANN model 

The focus of the current study is to identify critical FC features in the ANN with MVL and 

MTL. After calculating all SHAP value for each FC and each subject, we selected critical FC features 

following the method descripted in section 2.4.3. We identified A and B DP- and AX-related FCs in 

the win FC matrix, and for the loss FC matrix, C and D were found. Figure Y exhibits a visual 

representation of the top-5 FCs for each task and each disorder. In the win task, 4 out of 5 FCs are 

fusiform-related FCs for both DP and AX, while for the loss task, cerebellum-related FCs were 

identified in all 5 and 4 out of 5 FCs in AX and DP, respectively. Besides, we observed that FCs between 

cerebellum and visuomotor existed in each of the four sets of top-5 FCs. All selected FCs were 

visualized in the heatmap Figure Xa and table SX in the supplementary material.  

Two triangular matrices in Figure Xa are rather symmetric, indicating shared FC features across 

DP/AX, with A (win) and B (loss) features distinguishing both DP and AX from HC, and X and Y 

shared win/loss FC features for DP (across the bottom-left matrices) and AX (top-right matrices) 

respectively (refer to Table SX in the supplementary materal for details). These findings support the 

scientific premise of the study and the hypothesis that DP and AX may represent a continuum of shared 



neuropathology. In addition to the shared FCs, we found that for win, features shared between DP and 

AX were identified in the cerebellum-fusiform gyrus (blue box) and cerebellum-visuomotor (green box) 

networks, while for loss, FCs in visual cortex (red box) and between the visual cortical regions and 

cerebellum (purple box) were found. 

To examine the importance of brain regions’ importance in predicting DP/AX in win/loss task, 

we group 268 ROIs into X BAs according to (ref) and present the BA’s importance with the summation 

of the ROIs’ absolute SHAP values in each of the BAs in Figure Xb. As shown in Figure Xb, win task 

plays more important roles in distinguishing subjects with DP/AX from HCs, and most critical features 

in win/loss tfMRI were in visuomotor regions, secondary visual cortex, associative visual cortex, 

fusiform gyrus, and cerebellum. To check the importance of brain regions’ importance in the shared 

FCs between DP and AX or between win and loss, we calculated the summation of the ROIs’ degrees 

in each BA, and listed the top-5 BAs in Figure Xc. We found that most FC features shared between DP 

and AX are located in the visuomotor regions, fusiform gyruns, associative visual cortex and cerebellum. 

Figures Xb and Xc are consistant with our observations on Figure Xa. 

DISCUSSION 

We designed and implemented an Artificial Neural Network (ANN) diagnosing DP and AX by 

analyzing FC features from gambling tasks, associating wins with positive and losses with negative 

emotional valences. After fitting the ANN model, we identified critical emotional valence-related 

neural markers in predicting DP and AX with the machine learning explanation model SHAP. The 

findings add to the effort to develop diagnostic biomarkers of DP and AX. 

FC features show highly non-linear relationships with psychiatric diagnose (27,28). By 

conducted nested non-linear transformations on the win and loss FCs in the ANN model, features 

partake in the DP and AX classification in a non-linear manner. In our ANN model, MVL and MTL 

were used to improve the DP/AX classification performance. MVL facilitates us to predict DP/AX with 

both positive and negative emotional valences, and analyze the knowledge cross-learned from win and 

loss tasks. The MTL framework enables our ANN model to capture neural markers shared by win and 

loss tasks.  Both MVL and MTL improved the accuracy of ANN in differentiating DP and AX subjects 



from HCs as evidenced by the superior AUC in predicting DP/AX as compared to the analyses without 

MTL/MVL in the replication results.  

The SHAP value of FC features shows that many of the FC features in support of DP and AX 

prediction involved the visuomotor regions, fusiform gyruns, and cerebellum. Emotion can be encoded 

visually and experienced in imagery, and the visual areas, particularly the lingual gyrus, are known to 

show higher activity during emotion memory encoding and retrieval (29–31). For example, studies 

implicated emotional imagery during rumination and altered lingual gyrus activation during emotion 

memory in DP/AX (32–34). A recent study showed that in the cambridge gambling task, activation was 

found in the visual cortex, the visuo-motor cortex, as expected from the task requirement (choosing a 

color by pressing a button). Although evidence is less consistent to implicate the altered visual and 

visuomotor networks in DP/AX during the gambling task, research showed that premorbid anxiety 

and/or depression perform worse on visual motor speed components of neurocognitive testing, which 

might be caused by the potential alter neural networks on visual and visuomotor networks (35).  Early 

studies observed that increased fusiform gyrus activity exists for subjects in gambling task (36), 

and for subjects with pathological gambling or problem gambling, abnormal neural markers 

in fusiform gyrus were identified (37). Based on the observations that fusiform gyrus showed 

altered activity during both facial and non-facial emotion processing in DP/AX (38–42), it’s 

reasonable to observe altered neural activities in DP/AX in the gambling tasks.  

The cerebellum has long been known for its role in motor functions (43), but newer research 

have also revealed the cerebellum's critical role in modulating cognition and emotions 

(44). For example, gambling associated risk-taking decision was found to be closely related 

with damage to the cerebellum (45,46). Besides, the cerebellum is known for its role in emotion 

processing and the pathophysiology of depression and anxiety (47–50). Most studies on DP/AX 

and the cerebellum suggest a hyperactivity of the cerebellum, which might be caused by the 

attention impairments observed in both disorders, or areas contributing to the contrasting 

deficits that characterize each disorder (48).  

 

https://www.sciencedirect.com/topics/neuroscience/fusiform-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/cerebellum


In addition to shared FC features, the SHAP analysis revealed unique functional connectivity 

(FC) patterns. Specifically, the loss task exhibited fewer altered FC features in the cerebellum compared 

to the win task. This aligns with previous findings that, unlike healthy individuals, those with cerebellar 

damage show diminished pleasurable emotional experiences in response to positive stimuli, yet 

maintain normal emotional reactions to stimuli that induce fear (24). Besides, we also found that 

compared with the win task, the secondary visual cortex plays a more important role in the loss task on 

distinguishing DP/AX subjects from HCs. It’s aligned with the findings that altered secondary virtual 

cortex is observed on both DP (51) and AX (52) subjects, and the observations that depressed patients 

have increased activation to emotive, especially negative, visual stimuli (53), and anxiety increases 

sensitivity to errors and negative feedback over time (54).  

Our study has limitations. First, the discovery and replication samples were recruited from a 

single study; an independent test sample is needed to eliminate potential study-specific confounds. To 

maximize objectivity in validating the findings, we excluded the replication set from classifier training. 

Second, despite the large size of the training set, only a small subset of subjects is DP/AX. Third, the 

HCP did not contain clinically-verified depression or anxiety, and self-reported depression and anxiety 

scores could have limited the analysis. Fourth, the present study is cross-sectional, and it remains to be 

seen whether the identified connectivity features remain stable in classifying DP and AX. Finally, we 

did not consider behavioral measures in model prediction.  
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